基于PCA降维结合机器学习算法的人机交互手势识别研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
960KB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
更加自然和灵活的手势识别技术正逐渐成为智能移动机器人控制的重要人机接口。为了进一步提高基于计算机视觉的机器人导航控制的实时性和精度,提出了一种基于主成分分析(Principal Component Analysis,PCA)降维结合机器学习算法的手势识别方法。首先,对视觉摄像头捕获的手势图像进行预处理,具体包括图像二值化、中值滤波和形态学变换。然后通过PCA提取主要特征并对数据进行降维。最后结合机器学习中自组织神经网络(Self-Organizing Feature Maps,SOM)作为分类器应用于手势识别,具体采用的是学习向量量化(Learning Vector Quantization,LVQ)神经网络。静态手势实验测试结果表明:相比网络和K-means算法,提出方法缩短了手势识别时间,且识别准确率得到有效提高,验证了方法的有效性。相关论文
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-03-02加工回转分度类零件的工艺方案设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。