改进GWO的小波神经网络温控系统设计
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
6.95 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对目前铸件砂芯表干炉温度控制性能差、燃烧效率低,设计一种新型热风循环温控系统。该系统以变限幅双交叉燃烧策略为基础,采用改进灰狼优化(GWO)算法的小波神经网络对PID控制参数进行自适应调整。系统仿真表明:与传统PID控制相比,超调量接近于0,系统调节时间减少了50%,温度切换控制速度提高了47%。最后通过砂芯烘干试验验证,与传统比值串级PID控制相比,变限幅双交叉燃烧策略和改进GWO小波神经网络PID对炉温的控制效果有很大的提升。相关论文
- 2021-01-21基于ADAMS的钻装机扒斗机构优化仿真分析
- 2024-12-27前庭康复并联机器人设计及ADAMS仿真分析
- 2020-11-24自动送料机器人的仿真分析
- 2021-12-31基于ADAMS的轴向柱塞泵建模与分析
- 2024-12-27正交面齿轮均匀腐蚀后动力学仿真分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。