质量特性测试平台负载作用下的干扰力矩
针对负载作用下质量特性测试平台弹性变形引起干扰力矩的问题,研究浮起平台负载作用下产生干扰力矩的规律。根据弹性力学薄板弯曲理论,推导出在负载作用下有限元单元质心位移公式及结构整体质心弹性位移公式,给出浮起平台的干扰力矩公式,计算质量特性测试平台在测量过程中质心的弹性位移和由此产生的干扰力矩。研究结果表明:平台变形引起的干扰力矩为偏航角ψ的函数,幅值为平台自身重力和质心位移的乘积。分析结果为测试平台的结构设计和测试精度的提高提供了依据。
密闭环境气流冲击式压电阵列发电性能实验研究
为实现高压密闭环境的气体能量收集并提高能量转化效率,提出了一种气流冲击式压电阵列发电机。利用压电材料的正压电效应并结合压电本构方程对压电发电机理进行分析,结果表明在高压气体环境下可采用盘型压电片进行气体能量收集,且压电片外圆周需进行机械夹紧固定。设计并制作了一种压电发电阵列实验样机,搭建了实验测试系统。以高压气体为激励源对不同流量、周期及负载条件的改变进行了实验测试。实验结果表明,峰值电压与流量成正比,随着周期的增加峰值电压有小幅度的增长趋势,压电阵列在电学并联的情况下具有最佳的功率输出性能,当周期为0.8s、流量为200L/min、压力为0.3MPa时最佳的输出功率是0.99mW。
基于气体激励的压电俘能技术及其在气动系统中的应用与展望
气动技术正朝着智能化、无线化的方向发展,越来越多的智能传感器引入到气动系统来实现监测与反馈,因此实现传感器长期稳定的供能是当前气动系统亟待解决的关键问题之一。研究表明,利用压电材料可产生毫瓦级的电能输出,能量级数可以满足低功耗传感器的能耗需求,因此该技术有望作为一种新型的供电技术为电池续航,使低功耗传感器长时间稳定地工作。基于此,介绍了压电能量收集技术的起源,气体激励下的压电俘能器结构与研究现状,以及气动系统压力能转化为电能的相关工作。研究结果表明,压电材料可以将气体压力能直接转化为电能,其单片最大输出功率接近10mW,通过对电能的整理与存储可使气动系统中磁性开关正常工作。该技术可增大电池的使用寿命,甚至将来或可成为气动系统低功耗传感器能量的主要来源。
基于流场的气动换向阀流量特性研究
根据可压缩流N-S方程,利用Spalart-Allmaras(简称S-A)湍流模式和有限体积法,并采用四面体非结构网格,对不同阀口开度和接口管径的换向阀进行数值模拟,计算结果与试验吻合较好.通过对流场结构的分析表明,改变阀口开度,可以提高阀的音速流导和临界压力比的值;给出不同接口管径对流量特性的影响;分析得出换向阀流道结构参数的设计方法.研究结果对设计低能耗的气动换向阀具有指导意义.
小孔节流静压止推轴承超音速现象分析
小孔节流空气静压轴承固定气膜厚度时提高供气压力,在某些情况下节流孔的周围会发生压力突降的现象,这时可能会在节流孔附近因激波的出现而产生超音速区。本文针对这种现象,结合FLUENT软件进行分析,指出此时气膜内的压力分布,速度分布和马赫数分布,并对其分布位置进行比较和分析。从熵增角度证明小激波的存在性并且确定其出现位置。为完善静压气体轴承边界层理论提供一定的依据。
比例流量阀控气动伺服系统的反馈线性化控制
本文建立了比例流量阀控单自由度气动位置伺服系统的数学模型,并对此模型进行直接反馈线性化,得到一个伪线性系统,而后对此模型设计状态反馈控制器,并进行极点配置,理论分析和仿真结果表明了反馈线性化算法和状态反馈是有效的。
高频响液压轨迹跟踪系统复合控制策略的研究
介绍了几种提高液压轨迹跟踪系统响应频率和控制精度的控制策略并在此基础上设计了一种基于PID控制的前馈-反馈复合控制系统。Simulink仿真结果表明与常规PID、反馈控制系统相比这种复合控制策略有效地提高了系统的频宽保证了系统对高频输入的跟踪精度。
精密减压阀振动现象的仿真分析
本文通过建立精密减压阀的数学模型,利用仿真方法对影响阀振动的因素进行分析,得到了影响该阀振动现象的主要因素并给出了改进措施。
3自由度气动串联机械手的关节控制
3自由度气动机械手属关节串联式机器人,机械手在运动过程中,转动惯量、重力矩及关节间的耦合力矩等参数都会发生较大变化,影响了机械手末端的运动精度。针对这些问题,利用拉格朗日方程对机械手3关节进行动力学分析,得到多关节联动时单关节力矩方程。以腰部关节为例,通过对关节动力机构的数学模型线性化处理,采用状态反馈极点配置方法进行控制器设计,试验表明具有一定鲁棒性,但存在一定静态误差。分析产生误差的原因主要是干扰力矩的影响,根据单关节规划路径通过动力学模型得到补偿力矩,利用输入前馈对关节实施动态补偿。试验验证了方法的有效性,从结果可以看出,该组合控制策略抑制了扰动,提高了轨迹跟踪精度。
伴随气泡和气穴的低压液压管路瞬态分析
利用流体动力学原理,基于低压液压管路瞬态脉动过程中气泡和气穴同时存在的假设,在连续方程和运动方程的基础上,建立了低压液压管路中伴随气泡和气穴的瞬态脉动数学模型,给出了摩擦阻力项数学模型以及气泡和气穴的体积计算数学模型。并采用有限差分法和Matlab/Simulink,对一段等径水平直管道中有气泡和气穴产生时的压力瞬态脉动特性进行了仿真分析和实验研究。瞬态压力脉动波的仿真结果与实验数据的比较表明:所提出的伴随气泡和气穴的低压液压管路瞬态数学模型是合理的,仿真方法是可行的。












