低温级以CO2为工质的复叠式制冷循环热力学分析
传统的复叠式制冷循环通常采用的几种工质破坏臭氧层且温室效应较强,为此,对低温级以CO2为工质的复叠式制冷系统进行热力学理论分析,计算了不同蒸发温度下最佳COP及其对应的低温循环冷凝温度和流量比.通过对几种工质组合(R22-R12,R134a-CO2,NH3-CO2,R290-CO2,CO2-CO2,CO2-CO2加膨胀机)的比较,可发现自然工质的COP与传统工质的相当.综合考虑环境因素及设备的选择,自然工质系统值得推荐.
CO2跨临界循环热力学对比分析
对带回热器和带膨胀机的CO2跨临界循环过程应用热力学进行了对比分析.结果表明,带回热器的CO2跨临界循环过程虽然也能够在一定程度上提高系统效率,但只要膨胀机的效率达到一定值,带膨胀机循环的系统性能将优于带回热器循环的系统性能.
制冷与热泵循环节能技术新认识
分别从热力学、传热、流动过程、驱动方式和制冷剂的角度介绍了当前对于制冷循环中的蒸汽过热、回热循环、湿压缩的一些最新认识;探讨了膨胀机代替节流阀的可行性与节能潜力;阐述了合理传热温差的研究计算方法和降低流动阻力的方法,分析了变频压缩机和燃气热泵的优势及节能潜力,给出了新型替代制冷剂的特点和优势.
CO2跨临界循环双级滚动转子压缩机的设计与分析
环境问题的突出引起人们对CO2作为制冷剂的更多关注.CO2跨临界循环需利用双级压缩技术提高循环效率,因此对核心部件双级滚动转子压缩机进行自主开发设计,分析了双级压缩机工作腔内的吸气、压缩、排气过程和结构特点;设计了一定工况下的CO2跨临界循环双级滚动转子压缩机;根据设计的结构参数进行了运动和受力分析,并以此为指导,在摩擦严重的部位进行结构特殊化处理,如在滑板端部增加密封柱,以减小摩擦和泄漏,提高压缩机效率.
以自然度和完善度为基准的制冷和热泵系统环境性能评价探讨
从可持续发展观以及制冷系统的自然属性与大自然的角度出发,结合制冷剂的自然度和热力学完善度,提出了一种新的制冷和热泵系统环境性能的评价方法——制冷系统自然度。并对制冷系统自然度的评价指标进行了量化计算和分析,结果表明:各系统的自然度有很大的提升空间,采用制冷系统自然度的方法进行评价,能够为系统的改进提供指导方向。
CO2低温制冷循环热力学分析
通过对CO2单级压缩和双级压缩制冷循环的热力学分析得出,在一定的蒸发温度和冷凝温度下,CO2单级压缩制冷循环的COP比CO2双级压缩制冷循环的COP低、压差大、压比高.因此,CO2低温制冷循环系统应采用双级压缩制冷循环,为提高CO2双级压缩制冷循环的循环效率,应尽可能升高蒸发温度、降低冷凝温度,可以看出自然工质CO2双级压缩制冷循环有很好的发展前景.
渡槽结构隔震与耗能减振控制机理的研究
本文结合设计中的南泉水河渡槽结构,将隔震耗能混合减支座应用于渡槽结构,并将该控制结构与没有控制支座的常规结构进行了地震反应的比较分析.在计算分析中将渡槽槽墩结构简化为顶部具有集中质量的单柱结构,槽体作为刚体处理,槽内水体简化为Housner模型.
CO2跨临界热泵系统的优化与实验研究
为了提高CO2跨临界循环的性能,对系统每个部件以及整个系统的优化研究是非常必要的。因此提出了以基于系统的优化目标函数对CO2换热器的结构敏感性进行优化计算,分析了优化目标函数COPm随气体冷却器和蒸发器管径和管长的变化。计算结果表明,CO2跨临界循环系统应选择小管径和长管长。同时对优化后的新系统进行了模拟计算,其COP和制冷量分别比原系统提高了15%和18%。根据优化结果以及原有系统存在的问题,对换热器及相关部件进行了设计加工,进而建立了新的CO2跨临界水水热泵实验系统。结果显示,新系统的COP和制冷量提高了30%左右。总之,实验测试数据验证了模拟计算结果的正确性,所得结果有助于对CO2跨临界水-水热泵系统进行改善。
电液伺服振动台的振动控制技术及应用
振动台的振动控制直接影响着振动台试验的成功。本文介绍了电液伺服振动台试验系统的框图及共振特点,阐述了在其试验过程中振动台振动控制技术的内容及控制流程图。
CO2气体冷却器的性能模拟与优化计算
CO2气体冷却器的结构和换热效果对CO2跨临界制冷循环的性能影响较大,为了能设计出高效的气体冷却器,有必要对CO2气体冷却器进行性能模拟和优化研究:本文首先建立了CO2气体冷却器分布参数计算模型,对CO2制冷剂的出口温度、冷却水出口温度和换热量进行了模拟计算,并与试验测试结果进行了比较,验证了模型的可靠性。然后利用该模型对CO2气体冷却器进行了优化计算,主要分析了换热管径和管长对热重比及压降的影响。结果表明,热重比随管径的增大而下降,随管长的增加而增大。综合考虑热重比和压降两方面因素,CO2气体冷却器适合选择小管径和长管长。












