一种自适应CS算法及其在风电齿轮箱故障诊断中的应用
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
3.19 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对布谷鸟搜索(CS)算法易出现早熟收敛以及风电机组齿轮箱的故障模式难以有效识别等问题,提出一种基于自适应CS算法的BP神经网络(SaCS-BP)智能诊断技术。通过构建SaCS算法,实现了步长和发现概率的自适应调整,并采用一组基准函数测试了该算法的有效性;将SaCS与BP神经网络进行融合,构建了风电齿轮箱的故障诊断模型。结果表明,SaCS算法具有较佳的寻优精度和普适性。此外,与BP神经网络以及布谷鸟搜索算法优化BP网络(CS-BP)相比,SaCS-BP算法获得了最高的诊断准确度,从而实现了风电齿轮箱故障模式的有效识别。相关论文
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。