基于AO-VMD和IAO-SVM的齿轮箱故障诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
3.62 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对提高变分模态分解(Variational Mode Decomposition,VMD)的自适应性、优选本征模态分量(Intrinsic Mode Function,IMF)及多故障分类的问题,提出一种天鹰优化器(Aquila Optimizer,AO)优化VMD、综合评价模型优选IMF、改进天鹰优化器(Improved Aquila Optimizer,IAO)优化支持向量机(Support Vector Machine,SVM)的齿轮箱故障诊断方法。首先,采用AO优化VMD的参数并分解原始信号;其次,构建基于相关系数、峭度、包络熵、能量熵的CRITIC-TOPSIS综合评价模型,优选IMF,提取能量熵建立特征向量;最后,将其输入IAO-SVM识别故障类型。通过实验验证所提出方法的有效性。相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。