改进YOLOv5s的细胞培养板分类识别方法研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.13 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对传统生物实验室自动化程度低、效率低的问题,提出一种基于YOLOv5s的细胞培养板分类识别算法—YOLOv5s-tiny。首先通过多尺度同态滤波颜色恢复算法对输入端图像进行预处理,提高了图像的成像效果;在考虑实验场景的情况下对小目标的检测层进行剪枝;使用深度可分离卷积代替普通卷积,减少了模型的参数量,提高了运算速度;采用距离交互比损失函数及软化非极大值抑制算法,加快了收敛速度,提高了边界框的准确率;加入卷积块注意力机制,解决了检测过程中局部遮挡和漏检问题;最后,使用YOLOv5s-tiny算法对细胞培养板进行实验。通过与原始YOLOv5s算法比较,验证该算法能快速、准确的对细胞培养板进行分类识别,准确率和召回率分别提高了4.5%和1.4%,提高了生物实验室的工作效率。相关论文
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2025-01-03基于正交试验的液晶屏老化炉优化设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。