多域特征提取和极限学习机的滚动轴承智能诊断
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.43 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对现实复杂工况下的振动以及噪声问题,提出了基于多域特征提取、Fisher得分和极限学习机(Extreme Learn?ing Machine,ELM)的滚动轴承诊断方法。首先,通过多域特征提取方法构造多域特征集,其次利用Fisher得分算法按照多域特征集特征值的重要性进行排序,选择具有代表性的敏感故障特征,最后,将重新构造的多域特征集输入极限学习机中实现智能诊断。利用美国西储大学轴承试验数据进行分析,为贴近现实工况,在原始振动信号上加50dB的白噪声,结果表明,提出的方法能够有效识别滚动轴承的故障大小和类别,并具有良好的抗噪性。相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2025-01-03基于正交试验的液晶屏老化炉优化设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。