基于主成分分析的特征频率提取算法及应用
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
6.09 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
通过研究主成分分析(principal component analysis,简称PCA)中有效特征值与信号频率和幅值之间的关系,发现有效特征值的数量是由原始信号中频率成分的个数决定,与幅值、频率和相位的大小无关。信号中每个频率产生两个有效的特征值,且幅值决定协方差矩阵C的特征值在其分布图中的排列顺序。提出了一种基于PCA的特征频率提取算法,该算法可实现对单个或多个特征频率的准确提取。将此方法应用于大型转子系统轴心轨迹的提纯上,效果优于谐波小波和小波包算法。相关论文
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。