基于线性可分SVM的自动化机床在线故障监测系统设计
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.68 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对自动化机床在线故障监测存在的问题,设计一种基于线性可分SVM的故障监测系统。在线监测系统的硬件结构由STM32F103ZET6型单片机、传感器模块、存储器模块、通信模块和显示模块等部分组成;在软件算法流程上,利用线性可分SVM分类器,可以确保数据集到最优超平面的几何间隔最大,同时提升距离最优超平面最近数据点的可信度及对故障样本的分类精度。测试结果显示:设计的系统数据训练收敛速度快,故障数据分类精度高,相对于传统监测系统具有性能上的相关论文
- 2025-02-18典型机身结构随机声疲劳寿命分析研究
- 2020-12-14关于结构件焊接变形与工艺过程的分析
- 2020-11-16高精度复杂铝合金零件加工技术
- 2024-12-26轴承刚度对双叶片环保泵转子动力学特性的影响分析
- 2020-08-25液下硫磺泵的转子动力学分析



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。