基于近似熵与支持向量机的异步电机故障诊断研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
1.15 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对异步电机故障发生率高、故障类别难以有效识别的问题,提出一种基于近似熵与支持向量机的故障诊断方法。通过构造故障再现试验,分别测取4种不同状态类别的多测点振动信号样本。利用近似熵算法计算其近似熵样本值,得到4种不同状态类别的近似熵故障特征向量。结合支持向量机算法,构建支持向量机分类模型。近似熵特征量被划分为训练样本和测试样本,经验证其故障诊断准确率达97.5%,改进BP神经网络诊断方法的准确率为92.5%,结果表明:近似熵结合支持向量机方法具有更高的诊断精度。相关论文
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。