碧波液压网 欢迎你,游客。 登录 注册

Gradient Boosting算法在典型浅埋煤层液压支架选型中的应用

版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。

信息

资料大小
3.93 MB
文件类型
语言
简体中文
资料等级
☆☆☆☆☆
下载次数

简介

针对目前工作面液压支架阻力确定方法的不足,提出了1种新的预测方法,采用改进后的逻辑斯提算法(LR)来优化梯度提升回归(GBRT)模型,以此来预测液压支架阻力。在GBRT中加入学习速率来限制子模型的学习速率,防止其过拟合;应用LR对样本参数进行优化,建立LR-GBRT回归预测模型;将该预测模型应用于液压支架阻力的预测,预测结果与LR(线性回归模型)、SVM(支持向量机模型)、DTR(决策树回归模型)、EN(弹性网回归模型)进行对比分析。结果表明LR-GBRT模型具有较强的泛化能力,较高的预测精度,可以对液压支架阻力进行有效预测。
标签:
点赞   收藏

相关论文

发表评论

请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。

用户名: 验证码:

最新评论