CEEMD和MCKD的滚动轴承早期故障特征提取
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
4.74 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
当滚动轴承处于早期故障阶段的时候,受环境噪声和信号衰减的影响,滚动轴承振动信号特征频率成分难以精确提取,并且在信噪比较低时CEEMD不能很好提取微弱故障。针对上述问题,提出了基于互补集合经验模态分解(Complementary ensemble empirical mode decomposition,CEEMD)和最大相关峭度解卷积(Maxim correlated kurtosis deconvolution,MCKD)相结合的故障特征提取方法(CEEMD-MCKD)。两种方法的结合有效解决了CEEMD分解后无法提取出淹没在背景噪声中微弱信号特征的问题,又保持了信号的完备性,避免了有用信息的损失。通过仿真和试验验证了该方法的有效性及优点。相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-03-02加工回转分度类零件的工艺方案设计



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。