基于AWMMD的柴油机气缸故障特征提取方法研究
版权信息:站内文章仅供学习与参考,如触及到您的版权信息,请与本站联系。
信息
资料大小
2.00 MB
文件类型
PDF
语言
简体中文
资料等级
☆☆☆☆☆
下载次数
简介
针对柴油机气缸故障诊断时的噪声干扰问题,提出一种自适应加权多尺度形态分解(adaptive weighted multi-scale morphological decomposing, AWMMD)方法,从各个缸盖表面振动信号中提取故障特征。基于三种组合算子构造一种新的组合差值形态滤波器,用于对振动信号进行多尺度分解;以Teager能量峭度作为评判指标,设计基于遗传算法的各尺度形态模式分量(morphological mode component, MMC)权值自适应分配算法,提出加权多尺度形态分解方法;将自适应权值与多尺度分解的形态模式分量进行绑定,得到优化的故障特征提取结果。仿真信号测试与柴油机故障模拟信号分析结果表明,该方法能有效抑制噪声干扰并提取故障特征。相关论文
- 2020-09-03应用动网格技术模拟分析滚动转子压缩机的瞬态流动
- 2021-03-02加工回转分度类零件的工艺方案设计
- 2025-01-03基于正交试验的液晶屏老化炉优化设计
- 2021-09-02双级并联齿轮泵不同转速下流动特性的研究
- 2021-05-25超临界锅炉给水泵级间密封间隙流动特性



请自觉遵守互联网相关的政策法规,严禁发布色情、暴力、反动的言论。