C型MEMS平面微弹簧弹性系数研究
设计了一种新型的C型微机电系统(MEMs)平面微弹簧,用卡氏第二定律和胡克定律推导出这种平面微弹簧在3个方向(即x,y和z方向)上的弹性系数计算公式,用ANSYS进行有限元仿真,结果验证了公式推导的正确性。在公式计算和仿真的基础上,研究了各种结构参数对其弹性系数的影响规律。
基于MEMS微触觉测头和纳米测量机的扫描测量平台
将自主开发的基于MEMS工艺的微触觉测头与纳米坐标测量平台相结合,构建高性能的扫描测量平台,提高了微结构和器件扫描测量的精度和分辨力。基于微触觉测头的测量原理,研究了微触觉测头应用于纳米坐标测量平台的反馈控制方法以及控制转换参数的标定方法,讨论了扫描平台不同扫描方式对测量的影响。实验进行了相对平整表面和非平整表面形貌的扫描测量,结果表明,相对平整和非平整表面进程回程重复扫描差值的标准偏差分别为15.519 nm和23.088 nm,系统具有较高的测量重复性。
基于“荷花效应”的MEMS功能表面仿生技术
微机电系统(MEMS)正在成为新崛起的大规模产业和各国政府竞争的至高点,但随着其特征尺度的日趋减小,表面效应显著增强,由此引起的摩擦磨损、表面粘附等问题成为制约MEMS发展的瓶颈.论证了'荷花效应' 应用于MEMS领域仿粘减摩的机理,探讨了类荷叶仿生功能表面的制作方法,并给出了初步试验结果.
面向聚合物微器件超声波精密封接的阵列微导能结构
为提高聚合物超声波精密封接的可控性,预防高温度场下聚合物的熔融流延影响封接界面质量和精度,提出了阵列式微导能结构。以聚甲基丙烯酸甲酯(PMMA)微小管道的封接为实验对象,研究了阵列微导能结构的尺度对超声波封接过程的影响;采用热压成型工艺在被封接表面制作了5组不同高度的微结构。采用基于声波传递效率反馈的超声波精密封接方式,对超声波作用下聚合物界面的润湿行为进行了观察分析,讨论了结构尺度对超声波封接质量的影响。结果表明,随着微结构尺寸的增大,实现完全联接需要的超声波能量呈递增的趋势。该种微导能结构有效控制了聚合物熔融流延,获得了均一的封接面,可实现高质量精密封接。
低温环境下MEMS动态测试系统
研制了低温环境下MEMS动态特性测试系统。对低温环境的产生及其关键问题、低温环境下的激励方法、信号检测方法,及高速数据采集方法进行了初步研究。采用半导体冷阱产生低温环境,为防止低温下结霜对测试精度造成影响,测试在真空环境中进行。研制了基于压电陶瓷的底座激励装置,用于低温环境下对微器件激励。采用2种方法用于低温环境下微器件振动响应信号的检测,一种是采用内置敏感元件的方法,被测微器件受到激励后自身输出信号,经高速数据采集单元采集进入计算机 另一种是采用激光多普勒测振仪在低温环境外部进行检测。以LabVIEW为平台开发了测试系统控制软件,实现了微器件激励、数据采集、存储自动化。对系统的总体设计、硬件组成、系统功能、实验研究等方面作出了详细阐述。
微力学测试仪在MEMS键合强度测试中的应用
研制微力学测试仪,对微电子机械系统中键合结构的强度进行测试.最大载荷为1.4 N,在载荷量程为450 mN时仪器的最高分辨力为10 μN.采用键合在玻璃基底上的硅悬臂梁作为试样.为模拟横力剪切破坏和扭转破坏工况,用微力学测试仪分别在悬臂梁的固定端和自由端施加载荷至试样破坏.测得相应的破坏载荷并计算出最大剪应力.对破坏残骸的显微观察发现,存在玻璃开裂和硅开裂2种失效模式.该技术为微电子机械系统(micro-electro-mechanical system,MEMS)键合结构的强度表征提供一种有效方法,并可用来进行微悬臂梁或微桥的强度测试.
基于遗传算法的微机械陀螺的多学科设计优化
基于micro-electro-mechanical system(MEMS)技术的微机械陀螺是集传感器、致动器、检测与控制等于一体的复杂多学科交叉系统,其整体特性是各个子系统综合作用的结果.在充分考虑工艺、结构、电路、工作环境等多学科或因素的约束条件下,提出微机械陀螺的多学科概念设计模型.以陀螺的灵敏度最大为优化目标,利用遗传算法对设计模型进行全局优化,获得初步的最优设计方案,并采用有限元软件ANSYS验证优化结果的正确性.
之字型支撑梁硅微谐振器机械性能分析
与相同几何尺寸的其他支撑形式相比,之字型支撑梁降低了硅微谐振器的谐振频率.通过对之字型支撑梁硅微谐振器的力学建模分析,发现其为5次超静定问题,在此基础上得出了谐振频率等重要的性能参数随几何参数的变化关系.分析结果表明,在保证支撑梁垂直长度不变的条件下,对固定的折弯次数n,谐振频率fx随折弯角度φ的增大而增大;对固定的折弯角度φ,谐振频率fx随折弯次数n的增大而趋于一个固定值;φ=90°时则等效于双侧直脚型微谐振器.
基于异构宏模型的MEMS系统级建模方法
针对含复杂结构的MEMS器件,提出基于异构宏模型的系统级建模方法,即将基于解析法和基于数值计算的宏建模方法结合起来提取复杂器件的参数化宏模型,在此基础上实现MEMS系统级仿真.以z轴加速度计为例,在Saber中进行其系统级的时域、频域仿真,将仿真结果与有限元分析进行了比较,其仿真时间小于3min,相对误差小于3%,表明该方法能够快速有效地实现复杂结构MEMS器件的系统级仿真.
基于拉曼光谱仪的MEMS动态应力测试系统
微机电系统(MEMS)动态应力的瞬态特性决定了传统的应力测试系统无法直接满足它的测试需要。介绍了一种依据高频调制原理设计实现的基于拉曼光谱仪的MEMS动态应力测试系统,该测试系统是一个典型的光—机—电集成的MEMS测试系统。利用此测试系统对硅微谐振器支撑梁根部的单点进行了动态应力测试,测试结果与理论分析相吻合。实验表明,此测试系统具有高精度、非接触式、无损伤等特点,能很好地满足MEMS动态应力测试的需求。












