基于电流时频特征的不对中故障诊断研究
电动机电流信号分析广泛应用于电机本身的监测和故障诊断,但该技术与转动系统的研究却比较少。针对转子系统的轴系不对中故障,提出了基于经验模态分解(EMD)和遗传算法支持向量机(GA-SVM)的不对中故障诊断方法。首先通过EMD方法将电流信号分解成若干个本征模函数(IMF);然后计算各IMF分量的能量特征和峭度值;最后从包含有故障信息的IMF分量的能量特征和峭度值作为输入建立支持向量机(SVM)判断轴系故障类型。实验表明,该方法可以有效地实现对于转子系统不对中故障类型和故障程度的诊断,且相对于只依靠能量特征的诊断方法,该方法对于不对中故障的诊断正确率有了明显的提高。
一种BP神经网络的汽车齿轮箱故障诊断方法及实验验证
在小波神经网络算法的基础上,从时域和频域两方面对汽车齿轮箱的振动信号进行分析并提取时频域的多个表征值,设计了一种应用于汽车齿轮箱故障诊断的BP神经网络算法。采用经验模态分解法对齿轮箱时频域下的多维故障特征值进行分析和提取,导出了BP神经网络算法步骤和诊断模型;进一步以JZQ―250齿轮箱为研究对象,对该算法进行数据训练和验证,其状态实验数据结果表明,该算法能够在考虑汽车齿轮箱复杂故障下实现正确诊断,其用于汽车变速箱故障诊断具有较好的实用性,对汽车齿轮箱的故障诊断提供了一定借鉴。
-
共1页/2条




