碧波液压网 欢迎你,游客。 登录 注册

基于MED-MOMEDA的风电齿轮箱复合故障特征提取研究

作者: 王志坚 张纪平 王俊元 段能全 寇彦飞 吴文轩 来源:电机与控制学报 日期: 2021-04-26 人气:173
基于MED-MOMEDA的风电齿轮箱复合故障特征提取研究
强噪环境下,齿轮箱复合故障中的微弱故障特征难以提取,因此提出了基于多点最优最小熵反褶积(MOMEDA)的复合故障提取方法。首先对最小熵反褶积(MED)和最大相关峭度反褶积(MCKD)两种方法进行改进,以多点峭度最大值为目标,对信噪比不同的仿真信号,通过设置合理的周期区间逐个追踪复合故障的周期成分,验证了此方法降噪性能;然后将MED-MOMEDA应用风电齿轮箱复合故障实验台中,成功提取出复合故障特征;最后用文中所提方法与EEMD对比分析进一步验证了此方法的可行性。

基于CPFs的齿轮箱复合故障特征提取

作者: 叶美桃 柴慧理 来源:机械传动 日期: 2021-04-06 人气:63
基于CPFs的齿轮箱复合故障特征提取
由于方法选择不当,齿轮箱中复合故障的特征提取会出现漏诊断或误诊断现象,LMD(Local mean deconvolution)对信号分解时由于噪声影响,会出现EMD(Empirical mode decomposition)相似的模态混叠现象,常导致能量泄漏或误诊现象。提出了一种CPFs-MOMEDA(Combined physical functions-Multipoint optimal minimum entropy deconvolution adjusted)的齿轮箱复合故障诊断方法。首先通过LMD对原信号降噪,得到一系列的PFs,通过相关系数法剔除虚假分量和残余成分;计算每层PF(Production function)的多点峭度,提取故障特征周期,将不含周期性冲击的PFs二次剔除,为了保持原信号的完整性,通过组合乘积函数方法重新组合具有相同周期的PF;最后设定不同的周期区间,通过MOMEDA对组合后的信号降噪,进一步提取故障特征。并将此方法应用在齿轮箱复合故障特征提取中,验证了此方法的可行性。
    共1页/2条