基于频谱包络曲线的稀疏自编码算法及在齿轮箱故障诊断的应用
直接将时域或者频域作为低层输入信息构建深度学习故障诊断模型,可以有效的削弱人为因素的干扰,进一步提高人工智能在故障诊断领域的发展。然而,低层输入的时域信号长度难以划定,而频域信号的数据长度较大,导致模型的计算效率降低。针对该问题,提出预先对低层频域信号提取包络线,得到表征频域变化态势的信息成分,接着再与稀疏自编码结合构建稀疏自编码的故障诊断模型。齿轮箱故障诊断实验证明,与原始频域输入相比,所提方法能够在保证诊断效果的同时,降低计算复杂度和所需要的存储空间。
稀疏自编码深度神经网络及其在滚动轴承故障诊断中的应用
针对目前滚动轴承故障诊断主要采用监督式学习提取故障特征的现状,提出了一种基于稀疏自编码的深度神经网络,实现非监督学习自动提取滚动轴承振动信号的内在特征用于滚动轴承故障诊断。首先,将轴承故障振动信号的频谱训练稀疏自编码获得参数;然后用稀疏自编码获得的参数和轴承振动信号频谱的频谱训练深度神经网络,并结合反向传播算法对深度神经网络进行整体微调提高分类准确度;最后用训练好的深度神经网络来识别滚动轴承故障。对正常轴承、外圈点蚀故障、内圈点蚀故障和滚动体裂纹故障振动信号的分析结果表明:相比反向传播神经网络,提出的深度神经网络更能准确的识别滚动轴承故障类型。
模糊粒化非监督学习结合随机森林融合的旋转机械故障诊断
在旋转机械的智能故障诊断中,复杂网络结构的非监督学习方法调节参数多,训练时间长,而结构简单的网络诊断准确率不够理想。针对以上问题,采用模糊信息粒化和稀疏自编码器搭建并行结构的学习网络,并行结构的稀疏自编码器同时对粒化后重新构成的多个有效参量信息自适应的进行特征提取,随后使用随机森林方法对提取的特征进行融合分类。实验结果表明该方法可以有效实现高精度故障诊断;且与常用的串行多网络处理结构相比,降低了网络参数调节的复杂度和多层网络的前后影响,并且提高了诊断精度,减少了训练时间。
-
共1页/3条





