车体下心滚摆对高速列车气动性能的影响
越来越多的“晃车”现象凸显了明确车体姿态变化与列车气动性能之间的关系对于确保高速列车运行安全至关重要。但是,目前关于这个问题的相关信息较少。因此,本研究通过改进延迟分离涡数值模拟方法(IDDES)研究了车体下心滚摆对高速列车空气动力学性能的影响。结果表明,车体侧滚对转向架的气动性能有显著影响,车体侧滚会使转向架的侧向力和摇头力矩明显增大,进而加剧高速列车的运行不稳定性。此外,车体侧滚引起的转向架两侧纵向压力分布不均是导致转向架摇头力矩增大的主要原因。同时,尾涡也受到车体侧滚的影响发生了垂向的抖动。
基于磁流变液弹减振器的发动机减振控制研究
磁流变液弹减振器由磁流变阻尼隔振单元和磁流变弹性体隔振单元两部分组成,阻尼和刚度可调。将磁流变液弹减振器用于车辆发动机悬置,引入PID控制、模糊控制、模糊PID控制以及天棚控制策略,以降低发动机振动向车体的传递。建立发动机减振动力学模型与天棚控制动力学模型,以发动机激振力与路面不平度作为扰动输入,用MATALAB软件进行仿真。仿真表明,相对于被动悬置,添加控制策略的磁流变液弹减振器有着良好的减振效果。
泵源与机体共同激励下液压管路振动特性
车辆液压系统在工作过程中会受到车体振动与泵源液压脉动双重激励的影响,对压力波的传递及管网的振动产生重要影响。针对车辆液压系统泵源激励和车辆机体激励产生的振动进行分析,研究多源激励下管路的振动规律及压力波的传递规律。首先对泵源与机体共同激励下管路振动的计算方法进行了分析,将流体域动力学方程与固体域动力学方程进行组合,建立了流固耦合的总体动力学方程,然后对方程进行离散求解。基于理论推导,采用数值模拟的方法对液压管路的振动进行了分析,研究发现,液压系统在泵源谐波激励下的振动响应表现为宽频域的强迫振动,其谐波频率与泵源流体压力脉动频率保持一致,当泵源产生的压力脉动频率与液压管路的固有频率接近时,会激起管路结构大幅度共振响应。
-
共1页/3条





