基于卷积神经网络和小波包的微型振动马达的故障检测
针对手机振动马达检测量大、检测困难等问题,引入卷积神经网络对故障马达波形图进行分类检测。用采集卡采集马达转动时的原始电压信号,对电压信号进行两层小波包分解并重构低频信号,截取原始信号减去重构信号的波形图片进行预处理作为数据集。再用TensorFlow框架训练数据模型,对振动马达电刷不良、波形异常、波形跌落、磁场不良、良品5种类型进行分类,用改进的卷积网络模型测试集准确率达到了98.76%。因此基于改进的卷积神经网络有更好的诊断效果,且对提高故障诊断准确率有一定的作用。
基于GLRLM-SVM的电表版本分类方法研究
目前拆回电表版本的信息录入方法仍采用人工目测输入与数据库对比验证,面临效率低下、准确率难以保证的问题。利用实拍电表图像,提出一种在高杂糅环境背景下电表新旧版本精确分类的方法。先获取版本识别ROI区域,并提取灰度游程矩阵(GLRLM)特征,再对数据进行归一化处理与主成分分析(PCA),最后采用线性核函数的支持向量机(SVM)作为最佳模型进行分类实验。同时,采用不同的纹理特征提取算法结合不同分类模型对该方法性能进行评价。实验结果表明:基于GLRLM-SVM的分类方法优于其他模型,速度最快且准确率高达98.95%,满足拆回电表年检数量与精度要求。
-
共1页/2条




