不同风挡方案对强横风下货运高速列车气动性能的影响
采用三维数值方法,模拟强横风下货运高速列车周围流场,探索4种风挡方案对货运高速列车气动性能的影响。研究结果表明风挡局部变化对整列货运列车周围流速、压力以及车体表面压力影响主要体现在风挡区域;全包围风挡区域流速、压力及表面压力分布较均匀,并能在横风下使得整列车具有更小的气动阻力以及侧向力;顶端开口、以及上下两端开口后,风挡区域流场变化明显,且明显使整列车气动阻力、侧向力增大;底端开口对流场以及气动力影响较小。若需要在风挡处开口以方便检修,建议将开口设在风挡底部。
城市轨道列车气动性能优化研究
为研究城市轨道列车气动特性以及底部部件对列车气动特性的影响,针对三节车模型进行简化,保有底部部件较高完整性,采用Realizablek-ε湍流模型预测列车周围流场。数值计算结果表明列车气动阻力分布呈现出尾车阻力最大,占三节车总阻力的48%;中间车阻力最小,占总阻力的14%。其中转向架分别占头车、中间车和尾车总阻力的15.1%,56.4%和23.0%。车底设备分别占头车、中间车和尾车总阻力10.5%,10.3%和8.6%。因此对于头车、尾车采取减阻方案首先是采用流线型头型的方式减少流动分离现象。对于中间车减阻方法则要首先针对底部部件,采取密封舱的方式减少其产生的压差阻力。通过优化列车头型发现列车气动特性得到明显的改善,其中列车头车、中间车和尾车阻力分别为原始情况下的61.4%,70.1%和58.3%。在流线型外形基础上进一步稳定列车底部区域流场也有效改善...
横风下路堤高度对高速列车气动特性影响
通过采用三维瞬态DDES数值方法模拟强横风下,在路堤上运行的高速列车周围流场,对比3,6,9和12 m 4种路堤高度对高速列车瞬态气动性能的影响。研究结果表明强横风下,随着路堤高度的增加,列车两侧压力差增大,并影响列车周围流速分布,使得流场情况更为复杂。瞬态流场结构显示,在路堤高度增加之后,车体背风侧的涡结构逐渐由体积较小、脉动频率较高、能量较小的分离状逐渐转变为融合度更高、体积更大、脉动频率较低、能量较大的涡结构,将会使得车体运动的稳定性受到更大影响,更容易发生倾覆危险。从气动力来看,随着路堤高度的增加,头车受到的气动载荷增加较大。
-
共1页/3条





