基于多层神经网络的机电伺服系统积分鲁棒控制
针对含有模型不确定性的机电伺服系统,设计一种基于多层神经网络干扰补偿的控制策略。通过多层神经网络对与状态有关的干扰进行在线估计,以提高基于模型前馈控制输入的补偿精度,然后结合误差符号积分鲁棒(RISE)反馈控制方法,通过RISE的鲁棒增益处理神经网络逼近误差与未估计干扰,从而抑制干扰对伺服性能的不利影响。基于Lya⁃punov稳定性理论,证明了所提出控制器的闭环系统半全局渐近稳定,且系统所有信号有界。仿真结果表明:所提出的控制策略具有很好的干扰抑制能力,可显著提高机电伺服系统的跟踪精度。
基于卷积神经网络的液压缸内泄漏检测
由密封损坏引起的液压缸内泄漏会导致液压系统工作的不稳定.本文作者提出一种基于卷积神经网络的检测方法,先经过仿真得到在无泄漏、小泄漏、中等泄漏和大泄漏4种工况下的液压缸一个腔的压力信号,通过卷积神经网络的学习与训练,使其在不确定工况下通过输入压力信号自动地检测液压缸的泄漏程度.相比于传统的建模方法,文中方法克服了在非线性液压系统中建模难点,只需要采集压力信号,且简单可行,具有很高的可靠性;将该方法与传统的BP神经网络作对比,证明该神经网络的优越性。
-
共1页/2条




