碧波液压网 欢迎你,游客。 登录 注册

基于多尺度熵偏均值的液压泵故障特征识别

作者: 姜万录 董克岩 朱勇 王浩楠 来源:液压与气动 日期: 2020-01-22 人气:113
基于多尺度熵偏均值的液压泵故障特征识别
针对不同故障类型下的液压泵振动信号具有不同复杂性的特点,将多尺度熵引入到液压泵故障识别中。多尺度熵是在样本熵的基础上通过引入尺度因子,从而能够分析信号在不同尺度因子下的复杂性。在多尺度熵的基础上定义一个同时考虑多尺度熵熵值大小和熵值变化趋势的指标——多尺度熵偏均值(PMMSE)。该指标定量地刻画故障信号的复杂性。将该指标用于液压泵的故障识别中。通过对液压泵4种不同运行状态的实测振动信号进行分析,结果表明PMMSE能够很好地区分出液压泵的不同故障类型,验证了该指标在故障特征提取中的有效性。

基于VMD消噪处理的滚动轴承早期故障识别

作者: 姜万录 王振威 朱勇 董克岩 张生 来源:液压与气动 日期: 2020-01-22 人气:106
基于VMD消噪处理的滚动轴承早期故障识别
提出了一种基于变分模态分解(VMD)消噪和核模糊C均值(KFCM)聚类相结合的滚动轴承早期故障识别方法。首先提出一种通过综合运用泄漏能量和互相关系数函数确定VMD预设尺度数K的新方法,弥补了VMD方法通常按经验选取预设尺度数方法的不足;然后对振动信号进行VMD分解得到K个限带的内禀模态函数(BIMF)分量,利用归一化的自相关系数函数能量集中比大于0.9的原则确定含有噪声的BIMF分量,并剔除这些含噪BIMF分量,再将剩余的BIMF分量叠加进行信号重构,实现了信号的消噪;最后计算各样本重构信号的均方根值和归一化能量值得到二维特征向量样本集,并输入到KFCM聚类器进行故障诊断。利用实测轴承故障数据进行验证,结果表明与经验模态分解(EMD)方法相比,可以有效地实现滚动轴承早期故障诊断。
    共1页/2条