高超声速飞行器地面颤振评估技术研究
针对高超声速飞行器飞行过程中颤振边界变动范围大、试验测试难的问题,本文开展了考虑气动热效应的翼面结构地面颤振试验技术研究。首先基于工程法对结构所受的气动加热进行了分析,在此基础上开展了结构的热颤振特性评估并作为地面颤振试验结果的参考标准。考虑实际飞行中结构温升效应影响,建立了基于多工况点的气动力综合优化降阶算法,确保了整个温升过程的气动力模拟的精度。通过建立基于模糊逻辑比例、积分和微分(Proportional integral derivative,PID)控制的多点协调控制系统,实现了温升过程中时变系统的激振力控制器设计。最终搭建了地面颤振试验系统,按照典型飞行状态对结构的热颤振特性进行了测试,试验测试结果与仿真结果对比相对误差约10%。
高超声速飞行器热颤振研究现状与展望
高超声速飞行器在飞行过程中承受严酷的气动载荷以及气动加热,因此其结构在设计中要充分考虑气动力及气动热效应引起的结构动稳定性和动响应等问题,热颤振是其中较为关键的一环。本文梳理了热颤振研究的发展历程,总结了用于热颤振研究的多种现有方法,包括热模态试验、热颤振仿真分析以及风洞试验等。在此基础上,进一步分析了可用于热颤振研究的新兴技术——地面颤振试验技术的研究现状及存在问题,展望了地面热颤振试验技术的未来发展趋势。
时变系统地面颤振模拟试验方法研究
地面颤振模拟试验是一种颤振验证的全新试验技术,可作为当前颤振验证试验手段的有效补充。飞行器在实际飞行过程中,结构的动力学特性及承受的载荷是不断变化的,对于受气动加热影响的高超声速飞行器,这一时变特性则更加显著。本研究提出了基于代理模型的时变参数非定常气动力模型建模方法,建立了基于PID控制器的时变系统地面颤振试验方法,并通过标准试验件进行测试验证。试验结果表明,本研究提出的非定常气动力建模方法能够准确获得具有时变特性的气动力模型,建立的地面颤振试验方法能够有效应对颤振系统的时变特性获得准确的结构颤振边界数据。
考虑系统啮合错位量的弧齿锥齿轮齿面设计
基于考虑系统啮合错位量的齿面接触分析原理,以某航空减速器弧齿锥齿轮齿面设计为例,分析并建立啮合错位量计算模型,计算在制造误差、装配误差及加载变形等影响因素下的系统啮合错位量,开展了考虑系统啮合错位量的齿面设计,获得了齿面接触印痕(简称TCA)、加载印痕(简称LTCA)、传动误差、齿面相对滑动速度、齿面温升及工程应用中的装配印痕和磨合印痕,生成了齿轮副加工参数。实物齿轮通过疲劳试验考核,验证了上述设计方法的准确性,对弧齿锥齿轮的设计、生产和应用提供了一种参考。
-
共1页/4条






