基于广义复合多尺度排列熵与PCA的滚动轴承故障诊断方法
多尺度排列熵能够有效地反映滚动轴承振动信号的随机性变化和非线性动力学突变行为。针对其多尺度过程中粗粒化方式的不足,提出了广义复合多尺度排列熵(Generalized Composite Multiscale Permutation Entropy,GCMPE)。研究了参数对GCMPE计算的影响,并通过分析仿真数据将GCMPE与MPE进行了对比。将GCMPE应用于滚动轴承非线性故障特征的提取,提出一种基于GCMPE、主元分析和支持向量机的滚动轴承智能故障诊断方法。将提出的方法应用于实验数据分析,结果表明,所提方法能够有效地实现滚动轴承故障诊断,且故障识别率较高。
-
共1页/1条



