基于DTW相似度和Bi-LSTM的滚动轴承寿命预测
针对现有的滚动轴承退化指标单调性差,对轴承异常不敏感导致基于数据驱动的深度学习算法难以实现轴承寿命准确预测的问题,提出一种基于动态时间规整算法(DTW)和双向长短期记忆神经网络(Bi-LSTM)的滚动轴承剩余寿命预测算法。利用信息熵提取滚动轴承的退化特征,构造连续的时间序列;划分时间序列并构造出参考模板及测试模板,采用DTW算法计算模板间的相似度,将它作为健康指标表征轴承的退化程度;用健康指标训练Bi-LSTM网络并预测轴承的寿命。采用法
-
共1页/1条



