超声速/高超声速飞行器气动力快速估算平台设计及应用
超声速/高超声速飞行器气动力快速估算是飞行器初步设计阶段性能评估及设计优化的关键技术之一,气动力快速估算要求达到计算精度和计算速度的平衡。基于机理性的理论和工程模型建立了超声速/高超声速飞行器气动力快速估算平台。使用流线追踪方法和面元法来计算飞行器表面任意点的流动速度矢量,并调用算法数据库计算飞行器所承受的压力和摩擦力。结果表明,快速估算平台和CFD以及实验数据有较好的吻合性,基于流线的计算方法有很好的迎角适应性,算法模型符合快速估算的要求。相比于CFD,快速估算平台有更快的计算速度;相比于实验,快速估算平台有更大的适用范围。通过简单的飞行动力学仿真,验证了快速估算平台和弹道计算平台的协同仿真能力。
前后缘同时可控的乘波体气动修型设计与分析
从超声速气动原理出发,结合流线追踪和几何重构技术,提出了一种前后缘同时可控的乘波体气动修型设计方法。在前缘水平投影为超椭圆和后缘为圆弧的条件下,采用该方法完成了乘波体的气动修型设计并在设计点(Ma=6.0)和接力点(Ma=4.0)开展数值仿真研究。结果表明:在前后缘同时指定的条件下,气动修型设计的乘波体型面过渡光滑,只在出口两侧有很小的高压区,可以很好地保持基准乘波体的波系结构和乘波特性。与基准乘波体相比,气动修型的乘波体具有更高的容积率、升力和预压缩效率,俯仰力矩几乎相等,但是升阻比下降。有粘条件下,设计点时升阻比由2.91降为2.53,接力点时由2.69降为2.32。上述结果符合设计预期,设计方法可行。
考虑边界层转捩的复杂外形火箭弹气动热计算
为了有效评估高超声速火箭弹在飞行过程中边界层状态,准确计算弹体表面的气动加热情况,基于流线追踪法确定弹体表面流线长度和当地雷诺数,通过对二维平板和三维钝锥算例分析,确定了与实验拟合较好的转捩准则。利用该转捩准则将弹体划分为层流段、转捩过渡段和湍流段,分段计算了弹体表面气动热。结果表明:弹头驻点区域和舵片前缘气动加热最为严重,转捩分段计算可更加真实地预测弹体表面的气动热情况,3层防护涂层的布置方案合理。
-
共1页/3条





