碧波液压网 欢迎你,游客。 登录 注册

降速工况下滚动轴承微弱故障特征信号提取新方法

作者: 栾孝驰 沙云东 来源:机械设计与制造 日期: 2025-02-21 人气:180
降速工况下滚动轴承微弱故障特征信号提取新方法
研究降转速工况下滚动轴承微弱故障特征信号的提取,提出了一种基于计算阶次分析、三次样条插值分析与包络谱分析相结合的新方法。基于滚动轴承微弱故障实验测得的降速工况下的转速信号和振动信号,首先对转速信号在时域内积分获得角位移-时间信号,再对该信号进行线性插值获得等角度间隔的角位移-时间信号,然后利用该时间序列对振动信号进行三次样条差值获得等角度间隔分布的重采样振动信号,最后对重采样振动信号进行包络分析及快速傅里叶变换获得阶次包络谱。通过对滚动轴承微弱故障实验信号分析,表明该方法能有效提取出滚动轴承微弱外圈故障和滚动体故障特征信息。该方法为轴承微弱故障特征信号提取提供了一种重要手段,具有广泛的应用前景。

基于二次迁移学习和EfficientNetV2的滚动轴承故障诊断

作者: 杜康宁 宁少慧 来源:机械传动 日期: 2025-01-17 人气:98
基于二次迁移学习和EfficientNetV2的滚动轴承故障诊断
针对工程实际故障诊断环境下,可用数据稀缺,导致智能诊断模型对轴承健康状态识别精度较低这一问题,提出一种基于二次迁移学习和EfficientNetV2(Two-Step Transfer of Efficient⁃NetV2,TSTE)的滚动轴承故障诊断新方法。首先,将模型在轴承全寿命周期数据集中训练,之后冻结模型浅层权重,将其在多工况轴承数据集中训练,进行第一次迁移学习。其次,通过构造类不平衡数据集,研究实际故障环境下可用数据稀缺对故障诊断性能的影响。然后,基于合成少数类过采样技术(Synthetic Minority Oversampling Technique,SMOTE)过采样方法与编辑最近邻(Edited Nearest Neighbors,ENN)欠采样方法对故障数据进行扩充,使类不平衡数据集重构为类平衡数据集。最后,将模型在类平衡数据集中训练,冻结模型底层权重,训练模型深层,进行第二次迁移学习,使模型掌握平衡数据集故障特征。通过多种指标进行实...
    共1页/2条