基于优化VMD参数与VGG模型的轴承故障诊断
轴承振动信号的采集过程中难免会受到噪声的影响,使得轴承部分故障特征难以提取。针对此问题,提出一种基于蜣螂算法(DBO)优化变分模态分解(VMD)并与VGG神经网络相结合的轴承故障诊断方法。使用DBO对VMD进行参数寻优,经过优化后的VMD将原始振动信号分解为多个本征模态函数(IMF),通过皮尔逊相关系数选择合适的IMF对信号进行重构;对重构的信号进行连续小波变换(CWT)生成时频图;最后,通过VGG网络进行训练以完成对轴承的故障诊断分类识别。结果表明与其他诊断方法相比,所提方法降噪效果明显,同时对轴承的故障识别准确率达到了100%。
-
共1页/1条



