多子阵声信号融合下轴向柱塞泵故障智能识别方法
利用非接触式声阵列构造了多个子阵,建立了轴向柱塞泵故障噪声信号监测模型,并基于卷积神经网络-支持向量机(convolutional neural network-support vector machine,CNN-SVM)组合模型提出了故障智能识别方法。首先,运用子阵列平移的信号模型进行信号滤波,结合小波变换(continuous wavelet transform,CWT)生成时频图样本,通过多子阵合成RGB图片作为故障声信号样本;其次,用SVM替代Softmax分类器,建立了基于CNN-SVM的多子阵声信号融合的故障故障识别模型;最后,设计了柱塞故障、配流盘故障、斜盘故障和回程盘故障等4种故障并进行了实验验证。结果表明,所提方法在运行噪声环境下的分类准确率达到了97.5%,相较与单通道时频样本,其准确率提高了1.1%。
-
共1页/1条



