基于群智优化RBF神经网络的预测控制模型研究
为了提高预测控制模型的准确度,采用RBF神经网络来完成网络流量预测,并借助群体智能算法中的混合蛙跳算法来实现模型参数的优化。首先,在建模过程中引入混合蛙跳算法。然后,将RBF神经网络权重和阈值作为青蛙个体,随机产生的多个权重和阈值组合个体构成蛙群。对蛙群进行分组,并通过不断重新分组和组内迭代的方法来获取全局最优个体,从而得到最优权重和阈值,以便确定最优的预测控制模型。经过实验证明:采用基于群体智能优化RBF神经网络的预测控制模型具有更高的准确度。
基于混合蛙跳算法优化神经网络的齿轮箱故障诊断研究
为提高齿轮箱故障诊断的准确性,探寻诊断复合故障的方法,利用混合蛙跳算法优化BP神经网络的参数,构建SFLA-BP算法模型,在一定程度上弥补BP神经网络算法的缺陷。对比发现,该诊断方法具有较高的稳定性和较强的诊断能力,表现出很好的适用性,特别是在诊断复合故障方面具有一定潜力。
-
共1页/2条




