基于小波变换模改进Perona-Malik模型的强噪声信号滤波算法
鉴于偏微分方程在图像去噪中的原理和应用,针对传统机械振动信号去噪方法的局限性,提出了一种基于小波变换模改进Perona-Malik模型的强噪声信号滤波算法并用于机械振动信号去噪。首先研究了小波阈值去噪和Perona-Malik非线性各向异性扩散滤波模型之间的相关性,其次用小波变换模替代梯度模构建改进的扩散系数,并推导出了基于小波变换模的改进Perona-Malik模型。实验结果表明,与传统去噪方法和基本Perona-Malik模型相比,改进Perona-Malik模型不仅较好地实现了强噪声背景信号有效去噪,而且同时保留了信号细节特征,改进算法抗噪声干扰能力强,去噪之后信号畸变小,改进算法使信噪比平均提高了约3dB。
强噪声背景信号的Perona-Malik扩散滤波算法
为了提取强噪声背景下机械振动信号的微弱故障特征,提出利用Perona-Malik非线性各向异性扩散滤波模型来实现强噪声背景信号降噪的方法。首先阐述了偏微分方程和Perona-Malik扩散滤波模型在图像降噪中的应用;其次分析了小波变换等传统信号降噪方法的不足;最后基于图像降噪和信号降噪原理的相似性,利用Perona-Malik扩散滤波模型来实现机械振动信号的降噪,将其用于轴承振动仿真信号和实测信号。实验表明,与小波阈值去噪算法等传统信号降噪方法相比,Perona-Malik扩散滤波模型更适用于强噪声背景信号降噪,同时兼顾了信号去噪和保留信号细节特征的双重要求。
-
共1页/2条




