混凝土早强性能研究进展和展望
基于国内外的研究成果,将早强型混凝土的制备方法分为掺早强剂、使用特种水泥和掺高分子聚合物三种。分别归纳总结了这三种方法对混凝土早强性能的影响,并简要分析了各制备方法所存在的问题。此外,介绍了目前提高超高性能混凝土(UHPC)早强性能的方法,并对其未来的研究方向进行了展望。
超高性能混凝土(UHPC)在装配式建筑中的应用及质量控制指标
分析了两类超高性能混凝土(UHPC)在装配式建筑中的应用前景与相应的质量指标体系。结果表明:结构类超高性能混凝土可用于装配式浆锚搭接与装配式预制构件中,建议其抗压强度不低于120 MPa、抗弯强度不低于14 MPa、抗拉强度不低于7 MPa;装饰类超高性能混凝土可用于装配式建筑外墙装饰,建议其抗压强度不低于100 MPa、抗弯强度不低于10 MPa、抗拉强度不低于5 MPa;装配式建筑用超高性能混凝土的28 d干缩不宜大于300με,3 d自收缩不大于800με,28 d氯离子扩散系数不宜大于0.30×10^-12 m^2/s。
含粗骨料超高性能混凝土的制备及其性能研究
针对超高性能混凝土(UHPC)胶凝材料用量大、非绿色化、成本高、自收缩大等问题,通过引入5~10 mm粒径的粗骨料,采用普通河砂代替石英砂,并优化钢纤维体积掺量,成功制备出了经济环境效益良好、性能优良的含粗骨料超高性能混凝土(UHPC-CA)。研究了粗骨料掺量对UHPC-CA工作性和力学性能的影响,并与UHPC性能进行了对比分析。结果表明,UHPC-CA的流动性能相比UHPC有所降低,粗骨料掺量为675 kg/m3的UHPC-CA能保持良好流动性能,但随着粗骨料掺量的增加,流动性降低的十分明显;UHPC-CA抗压强度、抗折强度低于UHPC,弹性模量则高于UHPC,不同粗骨料掺量UHPC-CA力学性能变化并不明显;UHPC-CA抗氯离子渗透性能和抗冻性能表现良好,但是不如UHPC优异;掺入粗骨料能够改善UHPC-CA的自收缩性能,相比UHPC,其早期自收缩率明显降低。
钢纤维与PVA纤维对超高性能混凝土强度及抗冲磨性能影响研究
为了研究不同纤维对超高性能混凝土(UHPC)力学性能和抗冲磨性能的影响,分别在UHPC中掺入不同体积分数的钢纤维和PVA纤维,进行了抗压、抗拉及抗冲磨试验。结果表明,钢纤维对UHPC抗压性能的提升效果优于PVA纤维;钢纤维与PVA纤维均能显著提升UHPC的抗拉性能;PVA纤维对UHPC抗冲磨性能的提升效果优于钢纤维。
钢纤维取向角对超高性能混凝土抗拉强度的影响
为了明确钢纤维在超高性能混凝土(UHPC)中的增韧效果,人为改变钢纤维在UHPC拌合物中的排列取向。采用随机浇筑、顺拉伸方向浇筑、垂直拉伸方向浇筑三种成型模式成型了UHPC拉伸试件,通过轴拉试验得到UHPC的应力-应变曲线,并从断面观测钢纤维的分布取向。试验结果表明,钢纤维的取向对拉伸强度有决定性影响,其中,顺拉伸方向浇筑的UHPC抗拉强度达到12.4 MPa,极限应变达到了0.003 8;从拉伸断面上分析得出UHPC的抗拉强度与钢纤维沿轴向取向角有线性相关性。
低水化热低收缩超高性能混凝土(UHPC)试验研究
采用紧密堆积理论优化出了超高性能混凝土(UHPC)胶凝材料体系各组分比例,通过掺加钢渣粉和复合膨胀剂配制出低水化热低收缩UHPC,并通过SEM分析了UHPC水化产物和界面黏结微观结构。结果表明,采用大掺量矿物掺合料优化胶材体系和骨料体系可制备出工作性良好、标养条件抗折强度达25.6 MPa、抗压强度达142 MPa的UHPC,绝热温升仅59.7℃,180 d干燥收缩率仅280×10-6。钢渣粉的掺入不仅能有效降低UHPC水化热,对抑制收缩也有一定作用。
粗粒度区间钢渣微粉在UHPC中的应用研究
用粒度区间为45~80 μm的较粗钢渣微粉作为掺合料进行了UHPC的应用研究,试验结果表明,与基准混凝土相比,45~80 μm钢渣微粉在UHPC中以5%掺量取代水泥和复合掺合料后,UHPC的孔隙率降低、孔径分布得到优化、塑性黏度降低了42 Pa·s、流动性能提升(V漏斗排空时间减少了20 s)、28 d抗压强度提高了10~12 MPa、抗折强度提高了2~3 MPa。
超高性能混凝土纤维-基体黏结性能测试与机理分析
为研究超高性能混凝土纤维-基体黏结性能,通过单根纤维拉拔试验得到纤维拔出应力-位移曲线,并研究界面参数对纤维黏结性能的影响;通过扫描电镜观察、比较拔出纤维表面和端部形貌,发现钢纤维被拔出后,端部和表面黏结大量"球状"碎屑,且表面有"切削"痕迹,当钢纤维体积掺量为2%、埋入深度为3mm时,拔出纤维表面附着的碎屑密度最大,纤维-基体黏结强度最佳;结合混凝土拉伸本构模型,计算理论拉伸强度σc1,并通过配制相应的混凝土,利用单轴拉伸试验测得试验拉伸强度σc2,比较发现,其误差范围为5%±2%。
超高性能混凝土(UHPC)的配制及应用探究
选用合适的掺合料,采用正交法和最紧密堆积理论进行了超高性能混凝土(UHPC)基体的配合比实验,通过对力学性能检测,确定了UHPC基体的最优配合比,并在此基础上探究了钢纤维的掺量和掺入方式对UHPC性能的影响。试验结果表明,选用合适的掺合料,通过合适的配合比试验设计能配制出适于应用的UHPC。
纳米Al2O3和MgO对超高性能混凝土耐磨性的影响及机理
目的基于材料制备角度,使用纳米材料提高超高性能混凝土(UHPC)强度,进而提高基体耐磨性。方法纳米Al2O3和MgO分别以不同质量分数(0.05%、0.1%、0.15%、0.2%和1%)掺入UHPC,测试不同龄期力学强度及耐磨性,选取典型试件进行29Si和27Al的NMR和XRD分析,研究其内部结构特征,为分析纳米材料对UHPC强度及耐磨性的影响机理提供理论依据。结果掺入纳米MgO的UHPC试件强度及耐磨性皆优于空白及纳米Al2O3试样,尤其是当掺量为0.35%(Mg-2)时,7d抗压强度和抗折强度是空白样的1.11倍,磨损量减少了10%,但不同纳米MgO对UHPC性能的影响程度略有不同。微观分析表明,纳米MgO促进水泥水化进程,生成较其他试样更多的水化产物,因此UHPC内部结构较致密。但是纳米MgO又同时促进了水滑石的形成,随着纳米MgO掺量的增多,水滑石的产量也随之增多,不利于结构致密化。...










