桁架对列车气动特性的影响及其内部风场分析
为研究桁架结构对车桥系统气动特性的影响及其内部风场的分布特征,对某大跨度公铁两用斜拉桥的桁架主桥和箱梁引桥进行节段模型风洞试验,对比不同梁型的车桥系统三分力系数。基于试验结果建立CFD模型,推导适合桁架结构的等效风速计算公式,研究桁架横断面、纵断面及各车道位置处的等效风速分布及侧风折算系数。结果表明,桁架对列车的遮风效应较为显著,零攻角时,列车在桁梁上的阻力、升力及力矩系数约为其在箱梁上的66%、17%、50%;横风流经桁架结构出现了风速三维分布,迎风侧外侧车道上的风速高于其他车道;在各车道上方0.15~0.45倍梁高处的风速较大,最大风速出现的位置与车体形心高度较为吻合;桁架内部的平均风速显著低于来流风速,但在节间两个直角三角形形心附近出现了高风区域,最大侧风折算系数达到了0.92。
宽高比对扁平箱梁气动力特性的影响规律及流场机理研究
为研究宽高比对扁平箱梁气动力特性的影响规律及流场机理,以国内某跨海大桥初步设计方案为背景,在7个风攻角下对4个不同宽高比的扁平箱梁进行了数值模拟研究,得到了扁平箱梁的三分力系数、风压系数和时均流线图。研究表明,扁平箱梁的阻力系数受宽高比的影响比升力系数和扭矩系数显著。宽高比的增加会使扁平箱梁受到的阻力减小,但会使其受到更大的升力和扭矩。不同宽高比下扁平箱梁所形成旋涡的位置基本相同,但大小和强度不同,这直接导致了扁平箱梁所受气动力的变化。
双层桁架桥上列车气动特性风洞试验研究
为研究双层桁架桥上列车位于主梁断面上、下层的气动特性,通过节段模型风洞试验对双层桁架主梁断面上列车进行测力、测压。以某大跨度公铁两用悬索桥和CRH2列车为背景,研究双层桁架主梁断面上列车在迎、背风侧时,列车位于上、下层时的三分力系数、平均风压系数以及脉动风压系数,并且分析风攻角对上、下层列车气动特性的影响。研究结果表明1)上层列车的阻力系数要显著小于下层列车,当列车位于迎风侧时,下层列车的阻力系数可达到上层列车阻力系数的1.6倍,上、下层列车的力矩系数大小基本相同,但是上层列车的升力系数大于下层列车;上、下层列车的阻力系数随风攻角的增加逐渐减小并且两者的差值也逐渐减小。2)上层列车的迎风面、背风面的压差明显小于下层列车的情况,使得上层列车的总体阻力小于下层列车,并且上层列车的顶面、底面...
斜风下板桁结合加劲梁静气动力系数试验研究
以岳阳洞庭湖二桥为工程依托,采用风洞试验方法分别对板桁结合加劲梁成桥状态和施工状态横桥向三分力系数及顺桥向阻力系数随风攻角、风偏角的变化进行了试验研究,比较了不同长度补偿段模型对试验结果的影响,基于试验结果拟合了板桁结合加劲梁成桥状态和施工状态顺桥向阻力系数随风偏角变化表达式.结果表明:进行斜风作用下板桁结合加劲梁顺桥向气动力测试时,当补偿段模型长度约为测力模型长度的30%左右时基本可以满足精度要求;板桁结合加劲梁成桥状态和施工状态顺桥向阻力系数均随风偏角的增加而先增大后减小,当风偏角约为50°~55°时达到最大;板桁结合加劲梁横桥向阻力系数随风偏角的增大而先增大后减小,当风偏角为5°~10°时达到最大,约为风偏角为0°时阻力系数的1.05倍.






