风屏障对桥梁及车桥系统气动特性影响的数值研究
利用数值模拟方法探究风屏障参数对流线型桥梁气动特性的影响;分析风屏障对不同桥型气动特性的影响并进行横向对比;讨论风屏障的透风率对车桥系统的气动特性以及流场的影响,通过分析车桥的三分力系数、压力云图、速度流线图、车桥表面风压分布以及风剖面等特征,揭示风屏障对车桥系统气动特性的影响机理。研究结果表明:风屏障能降低主梁上方的流速,从而减小列车的阻力和力矩,但同时也增加了桥的阻力,因此,安装风屏障可提高列车的行驶安全性但不利于桥梁抗风;针对流线型主梁断面,当风屏障高度为3 m且透风率为30%时为最优组合,此时车桥系统的阻力系数可达到最小值1.33;风屏障对不同桥型的遮蔽效应不同,相同的风屏障遮蔽效应对流线型主梁断面的影响远大于对钝体主梁断面的影响。
头部主型线变化对列车隧道交会气动性能的影响
基于三维、可压缩、非定常N-S方程和k-ε双方程湍流模型,对不同主型线头部列车隧道交会气动效应进行数值模拟,得到列车在隧道内交会时的侧向力、总阻力以及隧道壁面压力变化。研究结果表明:隧道壁面和列车表面压力测点数值计算结果与动模型实验、实车试验结果较吻合,相对误差均在5%以下;单拱型列车隧道交会气动性能略优于双拱型;纵剖面型线对列车隧道交会气动力影响较大,纵剖面型线从下凹变化到上凸,头车、中间车和尾车侧向力幅值系数分别增加11.2%,14.0%和23.7%,最大总阻力系数增加7.2%;水平剖面型线从最宽外形变化到最窄外形,头车、中间车和尾车侧向力幅值系数分别增加3.4%,2.4%和4.6%,最大总阻力系数减小4.0%;改变头部主型线对隧道壁面压力变化影响较小,最大相对误差为1.7%。
不同风向角对高架运行磁浮列车气动特性影响分析
为了研究横风对高速磁浮列车运行安全的影响,本文基于三维、定常、可压N-S方程,对不同风向角作用下高速磁浮列车在复线高架桥运行的气动特性进行数值计算,并对列车表面压力、周围流场及气动力进行分析.结果表明(1)风向角越大,列车车体两侧的压差越大.(2)当风向角为0°时,尾涡具有明显的对称性,且强度及尺度都较小;当风向角为90°时,尾涡呈现明显的非对称性,且强度和尺度较大.(3)当车速一定时,列车气动载荷基本随风向角增大而增大,头车侧向力最大,尾车升力最大.气动力的最不利风向角范围集中在60°~90°.本文研究结果可为提高磁浮列车大风环境下安全运行提供理论指导和技术支撑.
鼓形动力集中动车组不同环境交会气动载荷数值研究
列车交会对车身产生冲击,影响车窗玻璃强度和空调进风性能等。为评估新研发的鼓形动力集中动车组不同情况下交会的车身压力变化,采用滑移网格技术,基于三维可压非定常雷诺时均方法和SST k-ω湍流模型,分析了隧道内不同线间距和不同车速,以及侧风环境下不同风速和不同车速的列车交会压力。结果发现,隧道内列车等速交会、相同线间距下,Pmax、Pmin和ΔP随车速增加而增大;同一速度下,Pmax、Pmin和ΔP随线间距增加而减小。风环境下列车交会,迎风侧列车的交会侧压力变化幅值最大。隧道内列车最大压力变化幅值远大于侧风下的压力幅值,隧道为侧风下的2.4~3.2倍。
-
共1页/4条






