激光等离子体X射线椭圆弯晶谱仪的设计
为了诊断0.2~2 nm的激光等离子体X射线,研制了一种新型的基于时间分辨和空间分辨的聚焦型椭圆弯晶谱仪,采用两个完全相同且对称分布的通道可以同时获得谱线的空间和时间分辨率.给出了弯晶谱仪的设计参数,采用了新颖的瞄准对中技术,并对光源偏离椭圆轴线造成的误差进行了分析.在'神光Ⅱ'靶室上进行打靶实验对该谱仪进行标定,利用X射线CCD相机成功地获取了谱线的图像,实验结果表明实测谱线波长与理论值吻合.
钢丝绳实时测长系统
钢丝绳长度测量中的关键是如何检测与消除打滑带来的测量误差.为了准确测量钢丝绳的长度,提出了采用比较压紧轮和驱动卷筒的转速比的方法来检测是否打滑,并在程序中采用累积脉冲误差的方法来消除由于微小打滑而出现的舍入误差.实验结果表明,该系统工作可靠,测量误差小于0.2%.
喷气箍缩等离子体X射线椭圆弯晶谱仪研究
为了测量喷气箍缩等离子体X射线的空间分辨光谱,利用椭圆聚焦原理,研制了一种椭圆晶体谱仪.分别利用Si(111)、Mica(002)椭圆晶体作色散元件,离心率均为0.9480,布喇格角为30~67.5°,光谱信号采用半径为50mm的半圆形胶片接收,从等离子体源经晶体到胶片的光路长为1430mm.在“阳”加速器装置上进行摄谱验证实验,成功获取了氩喷气等离子体X射线的光谱.测量光谱波长与理论值相符,其中Si弯晶获得的光谱分辨率(λ/△λ=200~300)低于Mica弯晶获得的光谱分辨率(λ/△λ=500~700).实验结果表明,该谱仪适合于喷气箍缩等离子体X射线的光谱学研究.
线阵CCD在异形回转体轮廓尺寸测量中的应用
讨论利用线阵CCD图象测量方法。配备Z、Y二维运动工作台及绕Z轴回转数显工作台,地异形回转体三轮轮廓尺寸进行检测。用Marr边缘检测算子对CCD获得的原始灰度图像进行处理,采用最小二乘法完成曲线拟合,获得亚象元分辩率。对Φ200mm异形回转体零件进行尺寸测量,测量系统精度达到μm级,并给出了试验结果。
氩气Z箍缩内爆等离子体温度诊断
为了诊断z箍缩等离子体电子温度,研究了氩的双电子伴线与类氦共振线的强度比和等离子体电子温度的关系。利用椭圆弯曲晶体谱仪在“阳”加速器上探测x射线光谱,采用x射线胶片接收信号。针对谱仪获取的氩的类氦谱线及类锂伴线,计算了伴线k与共振线w的强度比以及伴线j与禁戒谱线z之和与共振线强度比,利用伴线与共振线强度比值和等离子体电子温度的关系诊断出电子温度为960~1060keV,实验结果证明谱线强度比值法是一种探测电子温度很有效的诊断方法。
基于等离子体激光的X射线弯晶谱仪研究
X射线光谱议是一种强有力的激光等离子体诊断工具.为了获取激光等离子体发射的X射线中所包含大量信息,基于椭圆几何原理设计制造了X射线弯晶谱议.在上海神光Ⅱ号装置上利用LiF弯曲晶体分析器,用150J激光能量对Ti靶进行了试验.通过X射线CCD记录获取的谱线,结果表明这种聚焦型晶体分析器的灵敏度有了明显的提高.
双通道椭圆弯晶谱仪的传递效率分析
双通道椭圆弯晶谱仪(以下简称TCECS)是激光惯性约束核聚变(ICF)研究中非常重要的诊断仪器,在一个通道上用X光胶处或X-CCD作空间分辨测量,在另一个通道上用X光条纹相机作时间分辨测量,从而同时获得X射线的空间和时间特性。TCECS传递效率的高低将影响摄谱效果,而TCECS的传递效率取决于柱面镜的反射率、晶体的积分衍射率、滤光膜的透射率和光谱相对孔径,本文从理论上分析了TCECS传递效率的四种影响因素与波长的关系,并用Matlab6.1软件进行了数值计算,表明TCECS的传递效率随X射线波长增大而减小,这对今后TCECS的结构设计具有重要的指导作用。
氟化锂椭圆弯晶分析器的特性及应用
设计了测试能量范围为0.6~6keV的椭圆弯晶谱仪。此谱仪利用椭圆自聚焦原理,晶体分析器采用氟化锂材料,椭圆焦距为1350mm,离心率为0.9586,布拉格角范围为30~65°。在神光Ⅱ靶室进行了实验,入射激光波长为0.35pm,激光功率约为1.6×10^14W/cm^2,与厚度为100弘m的钛平面靶法线夹角约为45°。实验结果证实,弯曲的氟化锂晶体具有极佳探测效果,弯晶分析器对波长为0.2~O.35nm的X射线的分辨率可达500~1000,同时具有等光程而便于空间分辨测量的优点,在同样距离条件下比平晶分析器高一个数量级的收光效率,故适合于激光等离子体x射线的光谱学研究。
一种X射线诊断用椭圆晶体分析器的研制
在惯性约束聚变(ICF)中,激光等离子体产生的X射线包含了丰富的信息。为了获取这些有用的信息用于诊断电子的温度和密度,本文基于椭圆几何原理研制了布拉格散射角为30~65°区域的椭圆弯晶分析器,论述了等离子体诊断谱仪的弯晶分析器加工及其性能评价。LiF晶体被用作X射线散射元件,晶体是椭圆弯曲的粘贴在偏心率为0.9586、焦距为1350mm的不锈钢衬底上。激光功率为1.6×10^14W/cm^2,脉宽为800~900ps,并以钛作为靶材。实验结果表明,该弯晶分析器具有比平晶分析器更好的灵敏度,光谱分辨率达到500(λ/Δλ)。
基于超环面晶体的X射线成像诊断
设计了可用于X射线成像用的聚焦型超环面晶体谱仪,讨论了基于布拉格几何结构的超环面及球面弯曲晶体聚焦特性,给出了基于超环面晶体X射线2维单能成像的光源、晶体及探测器的最佳位置,在中国工程物理研究院激光聚变研究中心进行了X射线背光成像实验。利用超环面弯曲晶体作为成像器件,其弧矢及子午平面的曲率半径分别为290mm及190mm,该曲面晶体具有极高的聚光效率。实验中利用X射线成像板获取了Cr的Kα射线辐射形成的金属栅格2维图像。实验结果表明,研制的超环面晶体能够用于X射线单能成像;分析图像的光谱信息可知,在弧矢方向的空间分辨力约为100μm,实验结论符合预期目标。












