基于辅助增压系数补偿的IEHB系统轮缸压力控制研究
为解决电动主缸引入导致线控液压制动系统响应迟滞、摩擦非线性及初始压差对压力控制产生不同影响的问题,通过对集成式线控液压制动(IEHB)系统电动主缸进行开环试验分析,提出一种压力控制策略。结合压力分段控制构架,采用基于辅助增压系数补偿的前馈及反馈PID方法对电动主缸进行调控,同时利用逻辑门限值的方法控制增压阀、减压阀及电动泵,实现了基于该IEHB系统的压力控制器设计。执行机构在环试验结果表明,该控制策略响应时间约为150 ms,并能较好地实现压力跟随控制。
电控液压助力转向系统控制器的开发
针对传统液压助力转向系统存在的助力特性单一的缺点,增加了旁通油路,并设计了控制器,构成了助力特性可变的电控液压助力系统。通过控制步进电机带动的泄流旁通阀,改变了系统在不同车速工况下的助力特性。主要对控制器电路进行了详细设计,实现了步进电机的细分驱动控制,能根据车速的不同调节系统液压油流量。最后通过试验验证了控制器的性能。
电控液压助力转向系统的初步匹配计算
电控液压助力转向系统(ECHPS)具有随车速调节的可变助力特性可改善驾驶员的转向路感.通过对转向器转阀及ECHPS的分析建立了转向器模型以及分流式ECHPS的模型采用简化算式对转向器及分流式ECHPS操舵力特性曲线进行了分析.通过改变转阀的预开隙、转阀的坡口半径、转向器扭杆刚度及电磁阀阀芯节流口形状等参数分析了ECHPS的影响参数.计算结果表明分流式ECHPS操舵力特性主要取决于转向器转阀的结构参数并且和电磁阀阀芯开口有一定关系.
前置稳压阀对ECHPS助力特性的影响
旁通流量式电控液压助力转向系统ECHPS(Electronically Controlled Hydraulic Power Stearing System)中的执行元件常采用电磁阀.对有、无前置稳压阀的电磁阀ECHPS助力特性进行理论分析和试验验证,结果表明,对于电磁阀带有稳压阀的ECHPS,高低车速下其助力特性曲线都可以达到系统限定的高压;而电磁阀无稳压阀的ECHPS,当高速时,系统中将不能建立高压.出于驾驶安全因素和整个系统设计的考虑,ECHPS中的电磁阀带有稳压阀更理想.
流量控制式ECHPS系统转阀结构参数优化设计
在流量控制式电控液压助力转向系统(ECHPS)中转阀结构参数对系统的可变助力特性有重要的影响。应用液阻网络理论对系统的等效通流面积和助力特性进行了分析。建立了转阀阀口通流面积与转阀主要结构设计参数(小坡口宽度、小坡口圆弧偏心距、阀芯键宽、小坡口轴向长度)之间的数学关系。对转阀的主要结构参数进行了优化设计优化前为0.9mm、10mm、5.76mm和11mm优化后为1.115mm、4.626mm、5.652mm和4.499mm。仿真计算结果表明优化后可变助力特性范围由1.2升为3低速转向时最大手力达到了4N.m。
转阀结构参数对流量控制式ECHPS系统可变助力特性的影响
电控液压助力转向系统(ECHPS)具有随车速调节的可变助力特性,可以显著改善驾驶员的转向路感。本文对一种典型的流量控制式ECHPS系统进行了分析,建立了该系统的动态仿真模型;推导了转向器中转阀阀口的通流面积与转阀主要结构设计参数之问的函数关系。通过仿真计算,分析了转阀结构参数对流量控制式ECHPS系统可变助力特性的影响规律,并给出了流量控制式ECHPS系统转阀结构参数选择与匹配的基本原则。
基于集成式线控液压制动系统的轮胎滑移率控制
传统的车辆制动系统很难以轮胎滑移率为直接控制目标,为了提高汽车的主动安全性能,对集成式线控液压制动系统(IEHB)的轮胎滑移率控制机理进行深入研究。在建立IEHB执行机构物理仿真模型与7自由度整车动力学模型的基础上,结合分层控制构架,利用滑移率与制动转矩构成的双闭环非线性控制方法,设计了基于IEHB系统的轮胎滑移率控制器;通过AMESim与MATLAB/Simulink联合仿真平台,分别在高附着、低附着路面进行高速主动紧急制动仿真试验。结果表明:本文提出的控制方法可有效调控汽车轮胎滑移率。
-
共1页/7条









