集成式电静压伺服机构直流侧电压振荡抑制
电静压伺服机构属于泵控液压系统,驱动控制器将直流电转换为三相交流电以驱动伺服电泵旋转,进而使伺服机构产生往复运动。驱动控制器与伺服机构进行集成化设计可以有效降低强电电磁辐射,减小电缆长度,减少电接触点。但是在集成化设计中,需要降低直流侧支撑电容容量以减小驱动控制器体积。小容量支撑电容情况下,伺服机构作动时直流侧电压会出现不稳定振荡现象。通过主动缓冲的方法降低直流侧电压振荡幅度,满足集成化设计对直流侧电压稳定性和驱动控制器小体积的要求。
电静压系统用内啮合齿轮泵流量脉动特性
直线共轭内啮合齿轮泵工作噪声低且流量平稳,但关于其流量脉动的机理尤其是相关试验的研究较少。通过理论计算的方法,推导了直线共轭内啮合齿轮泵的瞬时流量计算公式、流量脉动率公式和困油腔的相对容积变化公式。利用三维流体动力学有限元仿真分析方法研究了困油腔的压力波动特性和泵出口的流量脉动特性。按照国际标准ISO 10767-1-2015规定的试验方法进行了泵出口流量脉动试验,试验测试某型排量10 mL/r的直线共轭内啮合齿轮泵在转速750 r/min和出口压力7.5 MPa的情况下,流量脉动率约为6.35%,流量脉动较小。
温度对伺服阀滑阀副摩擦力的影响研究
以伺服阀滑阀副为研究对象,分析了温度变化对伺服阀滑阀副工作时所产生的摩擦力的影响。伺服阀滑阀副工作时产生的摩擦力主要由阀芯和阀套直接接触产生的摩擦力和阀芯与液压油液产生的摩擦力组成。通过分别分析其与温度的关系,推导出伺服阀滑阀副工作时产生的摩擦力与温度之间的理论计算公式。分析表明:在-50~50℃的范围内伺服阀滑阀副的阀芯与液压油液的摩擦力随温度升高下降较快,阀芯与阀套直接接触的摩擦力随温度升高逐渐下降。在50~100℃范围内阀芯与液压油液的摩擦力数值较小并随温度升高下降缓慢,其值远小于阀芯与阀套直接接触的摩擦力。在工作温度-50~150℃范围内,伺服阀滑阀副摩擦力随温度升高而逐渐降低。
-
共1页/3条





