基于变模式提取与去趋势波动分析的液压泵故障诊断研究
由于液压泵故障识别难度大,并且检测到的液压泵故障振动信号中包含噪声等无关干扰信息,为此,提出了一种基于变模式提取和去趋势波动分析的方法,用于对液压泵故障进行识别和诊断。首先,通过变分模式提取方式,对采集到的液压泵振动信号进行了分解,得到了一系列固有模态函数分量;然后,通过去趋势波动分析方法,得到了不同模式分量的标度指数;利用标度指数的幅值阈值区分有用信号和噪声信号,并对含噪的模式分量进行了小波降噪,以最大程度地保留其中的有效信息;最后,将降噪处理后的模式分量和不含噪的模式分量进行了重构,并对重构信号进行了多统计学特征计算和局部保留投影降维。研究结果表明:变模式提取对信号进行分解后的结果,与原始不含噪信号的均方根误差仅为0.3251,该结果可为后续基于局部保留投影的液压泵不同故障类型的准确聚类...
基于改进ACCUGRAM的滚动轴承故障诊断方法
滚动轴承故障信号的特征容易被强噪声淹没,难以提取信号中的冲击成分。针对这一问题,提出多点最优调整的最小熵解卷积(MOMEDA)优化的ACCUGRAM算法,并应用于滚动轴承故障诊断。首先利用MED算法对原始信号进行滤波预处理,突显信号中的有效循环冲击成分,提高MOMEDA优化ACCUGRAM算法中频带选择的分类精度,选择最佳的带宽和中心频率,最后对获得包含信息量最大的频带进行故障特征频率的提取和轴承的故障诊断。仿真和试验数据分析结果表明:该方法能够有效提取信号中的周期性冲击特征,具有一定的实用性。
张量秩-(Lr,Lr,1)分解算法在机械故障盲源分离中的应用
当源信号不满足统计独立的假设,或者观测通道数少于源信号数时,经典的盲源分离方法如独立分量分析的处理效果很差。提出了一种基于张量分解模型的盲源分离算法,该方法将观测信号分解为一系列由源信号拟合的有理函数。将观测信号的每一个通道映射为Löwner矩阵并堆叠形成三维张量数据;根据Löwner矩阵的秩和源信号拟合多项式阶数的对应属性,通过张量秩-(Lr,Lr,1)将张量唯一地分解为由源信号的Löwner矩阵表示的前2个模式和由相应的混合向量表示的第3个模式,从而准确地分离出不同源信号;通过数值仿真实验和实测轴承混合故障的盲信号分析,证明了该方法在盲源分离的优良性能。
基于频域窗函数的短时傅里叶变换及其在机械冲击特征提取中的应用
提取冲击特征是实现轴承、齿轮故障识别的关键,但是容易受到噪声和其他无关成分的干扰。区别于经典的时频分析方法如短时傅里叶变换和同步压缩小波变换,提出基于频域窗函数的短时傅里叶变换法。利用最大相关峭度反卷积的方法对振动信号进行滤波,使信号的质量得到提高;通过频域窗函数,实现二维时频平面中时间的精准定位和冲击特征的准确识别,进一步锐化了复杂多组分信号的时频脊线。利用所提方法对数值仿真信号和实际轴承故障信号进行分析,验证了所提方法的有效性。
CSP摆剪减速器轴承失效原因分析及其改进措施
基于某炼钢厂CSP生产线摆剪减速器轴承使用寿命短这一事实,分析得出轴承结构形式可能是使轴承失效的主要原因。采用有限元仿真技术,分析得出三种结构形式圆柱滚子轴承在剪切带钢时的接触应力以及轴承自身温度载荷作用下产生的接触应力。结果表明,该摆剪减速器轴承内圈与滚柱之间最大接触应力与其材料屈服极限相近,验证了轴承结构是使轴承产生破坏的主要原因,同时对比发现滚柱数目对接触应力有较大影响。该炼钢厂将轴承更换为具有相同安装尺寸的不同结构形式轴承后,失效事故不再发生。在轴承选型时不仅应当考虑外载荷和工作温度对轴承套圈接触应力作用,而且应考虑滚子数量不同对轴承套圈接触应力的影响。
基于张量奇异谱分解的机械故障特征提取方法研究
提出了将张量奇异谱分解运用于机械故障诊断特征提取,张量奇异谱分解(TSSA)是传统奇异谱分解(SVO)的扩展。由于传统奇异谱分解在处理非平稳、非线性的信号效果不理想,故障特征不明显。因此将传统的奇异谱分解延伸到三阶张量分解中,从而将一维的时间序列转换成为三阶的张量,然后运用标准(PARAFAC)张量分解,标准(PARAFAC)张量分解是把秩为R的张量分解为R个秩-1的张量的和,分解出原始张量的因子矩阵和权重,并重构回一维信号进而对信号的时域和频域做出分析。为了证明方法的有效性,将该方法应用于轴承故障信号的特征提取中,分别运用了仿真和实测信号做了分析,结果表明该方法不仅能有效地抑制噪声,明显地提取轴承故障信号特征,而且其效果要优于传统的奇异谱分解方法,具有一定的工程实践价值。
高阶局部投影算法及其在滚动轴承故障诊断中的应用
针对局部投影降噪算法中邻域相点的质心选取问题,分析了邻域质心的选取对降噪效果所产生的影响. 提出了一种高阶邻域质心的选取方法,利用高阶多项式对邻域质心进行了更为精确地估计,更好地适应了吸引子的几何 形状,进一步抑制了噪声,提升了局部投影算法的降噪效果.通过数值仿真信号进行了验证,并与同样基于相空间重构的 非线性时间序列降噪方法做了对比,说明了高阶局部投影算法的优越性.最后将其运用于工业现场的风机轴承故障诊断 中,从频域成功地提取出了滚动轴承的故障特征.
基于量子遗传优化的原子分解算法及其在机械故障诊断中的应用
机械设备故障的发生往往伴随着振动现象,通过对故障振动信号进行有效的分析是机械设备故障诊断的关键。最近提出的稀疏分解算法具有多分辨率、稀疏性和冗余的特点,但是也存在着原子库构造困难和分解算法计算量大的问题,为了更好将稀疏分解算法应用于机械故障诊断中,提出在正交匹配追踪算法的基础上,采用具有良好时频特性的Gabor原子,利用量子遗传算法快速求解多参数全局最优解的优点,从振动信号中快速和准确地提取出故障特征信息。通过数值仿真信号分析证明了所提的方法无论在特征提取的准确性上还是减小计算时间上都优于传统的正交匹配追踪算法,另外在轴承故障诊断实际应用中的实例分析中,相比传统的频谱分析方法更能有效地提取出故障特征信息,有效降低了背景噪声和杂质频率的干扰。
基于多传感器时频分布的机械故障信号欠定盲源分离方法
结合多传感器时频分布(multisensor time-frequency distributions,MTFD)和盲源分离(blindsource separation,BSS)的特点,提出一种针对机械复合故障信号的欠定盲源分离方法。首先利用Wigner-Ville分布将观测信号转化为MTFD矩阵;然后对该矩阵进行白化处理和噪声阈值处理,并对其自动项进行选择,对其特征向量进行集群处理,从而得到源信号TFD的估计;最后对源信号进行重建,得到源信号的估计。仿真及试验结果表明,本文所提出的方法在处理非平稳复合信号的欠定盲源分离方面具有很好的效果。
压缩感知框架下的共振解调故障诊断方法
风力机滚动轴承早期故障诊断中,压缩感知算法能够利用信号的稀疏性对信号去噪,但稀疏度的选取对去噪结果影响较大。由于信号故障成分在傅里叶域的稀疏度已知,故可通过傅里叶变换基和压缩感知子空间追踪(CS_SP)算法对风力机信号的包络特征进行不完全重构,以降低噪声和其他无关信息的影响,获取直接反映故障特征的信号成分,从而提取故障特征频率。研究结果表明,压缩感知框架下的的共振解调技术能有效获取风力机滚动轴承的故障特征信息,验证了所提方法的有效性。












