碧波液压网 欢迎你,游客。 登录 注册

后缘舵机身干扰区气动加热机理及局部外形优化设计

作者: 艾邦成 陈智 江娟 聂春生 易仕和 来源:导弹与航天运载技术 日期: 2022-11-22 人气:197
后缘舵机身干扰区气动加热机理及局部外形优化设计
后缘舵在机翼的遮挡下其热流峰值明显低于全动舵,但因其与机身、机翼均会发生干扰,其局部流动结构和热环境特性更为复杂。基于数值模拟方法及风洞试验开展了后缘舵/机身缝隙干扰区的气动加热机理研究,发现后缘舵在机身上的投影线处形成一条高热流条带,该热流条带上的热流干扰因子远大于压力干扰因子。数值模拟结果及风洞试验的纳米示踪的平面激光散射技术均表明产生这一现象的原因是气流在翼面迎背风压差的作用下穿过缝隙对机身与舵之间的漩涡产生抽吸,高温气体向机体下方运动在机身上再附形成高热流带。基于此分析,提出通过底面局部倒圆角、减小漩涡再附角度进而降低机身干扰热流峰值的局部外形优化方法。3个典型工况的数值计算结果表明,优化后的模型较原始模型峰值热流降热幅度达到了27%~31%,降热效果显著。

气体辐射与流场耦合对火星进入热环境影响

作者: 刘伟华 吴启东 杨小娜 肖华 张智博 吴正人 来源:宇航学报 日期: 2022-11-09 人气:199
气体辐射与流场耦合对火星进入热环境影响
采用火星大气物理化学模型,求解带辐射源项的三维热化学非平衡N-S方程,对探路者号火星探测器进入过程中的高温流场和热环境进行了数值模拟,分析了气体辐射与非平衡流场耦合效应对流场和热流的影响。结果表明1)探路者号火星探测器流场热化学非平衡效应显著,CO2气体发生大规模离解,高度低至28.5 km仍存在热力学非平衡效应;2)热力学与化学非平衡效应的影响均与表面催化特性相关,完全催化热流要高于完全非催化热流50%以上;3)高温流场中的CO组分会产生较强的气体辐射加热,辐射热流与对流热流的比值为15%~45%,靠近肩部区域比值最大;4)气体辐射对非平衡流场的冷却效应使激波脱体距离减小;与非耦合方法相比,采用耦合方法得到的辐射热流降低约12%~25%。

主动引射冷却对空气舵热环境影响的试验研究

作者: 汪震 邹云峰 何旭辉 刘路路 严爱国 来源:导弹与航天运载技术 日期: 2022-11-01 人气:112
主动引射冷却对空气舵热环境影响的试验研究
以气体引射冷却为代表的主动式热防护系统是未来先进热防护技术的重要发展方向,对于改善飞行器重要区域的热环境有广泛应用前景,研究其对于流动和热环境的影响规律具有重要意义。针对典型的平板-舵结构,在超声速激波风洞中研究了主动引射冷却系统在不同喷流条件下对于模型空间流场结构和典型区域热环境的影响规律。试验结果表明随着引射喷流马赫数的增大,喷流形成的弓形激波逐渐增强,与平板表面的夹角逐渐增大。模型中舵尖下方平板、舵轴前平板、舵轴前舵底面、舵前端以及舵轴迎风面的降热效果显著高于附近其他区域。当引射喷流马赫数为4时,上述各区域的降热率约为70%~90%。

气动热环境试验及测量技术研究进展

作者: 朱广生 聂春生 曹占伟 袁野 来源:实验流体力学 日期: 2022-04-06 人气:130
气动热环境试验及测量技术研究进展
地面风洞试验和飞行试验是研究高超声速飞行器气动加热的主要手段。针对临近空间复杂气动外形高超声速飞行器气动热环境研究的需要,分析探讨了国内气动热试验及测量技术的发展情况。分析了临近空间高超声速飞行器外形特征以及飞行剖面、边界层转捩和气动热环境特性等,进而分析了气动热环境风洞试验模拟理论,介绍了适用于气动热研究的风洞试验设备及其模拟能力,重点讨论了适用于不同类型风洞的热流测量技术发展近况、存在的问题和发展趋势;在以长时间、高热流、高壁温为主要特征的高超声速飞行试验中,无法应用风洞环境下的热流测量技术,因而介绍了目前飞行试验中采用的气动热测量技术,讨论了根据结构温度反辨识表面热流存在的问题,以及热流传感器表面的"冷点效应"、表面催化特性等因素对飞行试验气动热测量的影响,提出了后续...

低速引射对高超声速飞行器气动加热影响

作者: 王丽燕 檀妹静 王振峰 聂春生 李宇 郑宇 来源:南京航空航天大学学报 日期: 2022-03-29 人气:118
低速引射对高超声速飞行器气动加热影响
为研究低速引射对高超声速飞行器气动加热的影响,对高超声速来流条件下大面积平板引射进行数值模拟,讨论了引射孔结构、迎角和引射入口速度对边界层流场的影响,得到了不同引射孔结构下壁面热流,引射影响因子及流动参数随引射入口速度的变化。结果表明:低速气体引射在一定程度上能缓解引射区域壁面和下游壁面的气动加热情况。4种引射状态中引射孔结构4(即面引射)壁面热流最低,其他3种引射孔结构冷却效果基本相当。相同条件下10°迎角低速气体引射降热效果明显优于0°迎角的情况。引射入口速度v=20 m/s时,0°迎角情况下,引射区引射影响因子约为0.23,即壁面平均热流降低约23%;10°迎角情况下,引射区引射影响因子约为0.45,约为0°迎角情况的2倍。
    共1页/5条