基于ASIC芯片的微小电容测量电路研究
基于一款专用集成电路芯片(ASIC)HTl33实现了一种微小电容测量电路。该电路具有高分辨率、高抗干扰性、偏置调节能力和模拟、数字信号两种输出模式等特点。文中详细论述了测量电路的实现以及电路的抗干扰措施,并通过测定一组微小电容验证了电路的性能。实验表明,电路分辨率达0.5fF,非线性度8.67%。该电路在各种电容式传感器特别是微机电系统(MEMS)传感器中有广泛的应用前景。
一种改进的振动式微机械陀螺驱动电路
采用闭环控制电路使振动式微机械陀螺驱动模态保持谐振是提高其灵敏度和稳定性的最为直接、有效的方法。基于锁相控制环路是目前振动式陀螺驱动广泛采用的控制方法之一。对包括陀螺在内的锁相环各个环节进行了建模。对各部分模型线性化处理后,推导了微机械陀螺锁相环控制电路的系统传递函数。传递函数的分析表明该系统是一个有差系统,即压控振荡器发生频率和陀螺谐振频率总是存在一定的频差。文中引入了校正环节来消除稳态误差。采用音叉电容式微机械陀螺进行了实验,转台实验显示刻度因子有所提高,表明该控制方案能够有效的提高陀螺的灵敏度及其稳定性。
高性能微加速度计接口电路的研究
介绍一种可用于微机械电容式加速度计检测的接口电路,该电路利用电荷放大器把电容变化转变成电压变化,再对被加速度信号调制的载波信号进行解调,经过低通放大滤波,最后得到与加速度信号成正比的直流电压信号,具有测量差分电容变化的功能和灵敏度高、线性好的特点。整体电路通过Pspice进行了仿真,优化后制成PCB板进行实验。实验结果线性度为5%,灵敏度为19.5V/pF,表明该电路是一种具有实用价值的电容式加速度计检测接口电路。
电容式微加速度计的噪声分析
噪声是以微弱信号处理为特征的电容式微加速度计性能提高的主要制约因素。针对电容式微加速度计的噪声,详细分析和研究了其特性。首先分析了电容式微加速度计的系统噪声由机械热噪声和电路噪声两部分组成;采用热力学均分理论和集成电路噪声特性分别对机械热噪声和电路噪声进行建模、分析和计算,得到了机械热噪声等效噪声加速度和各级电路的噪声值。然后用自行设计的微加速度计表头和接口电路进行试验,实验结果验证了噪声模型的正确性,确认了电容式微加速度计电容检测电路—电荷放大器是最主要的噪声源。
“电磁阀”讲座:第四讲 阀芯滑动密封
阀芯滑动密封出现在刚性阀芯的电磁阀中,如活塞式阀芯的电磁阀。由于阀芯与阀壁相对滑动,两者间不可避免地存在滑动间隙。通过该间隙难免有介质渗入阀芯上部,为实现可靠开阀使得导阀口不得不加大,以便迅速排出该介质泄漏流量,以降低阀芯上部先导压力。该介质泄漏流量越小,导阀口孔径也可越小,这样,所需电磁力也小。为此,人们努力谋求降低从间隙中流入的介质泄漏流量,使之最低,以使电磁力减小、尺寸与重量降低,发挥出电磁阀的应有特色。为了最大限度降低泄漏,电磁阀滑动密封通常采取以下三种措施。 1.迷宫密封结构所谓迷宫密封结构,是指介质通过曲折似迷宫式的间隙,产生节流效应。
-
共1页/5条







