人字齿轮修形敏感性分析
为了提高人字齿轮修形结果的适用性,需要对齿轮齿面修形参数进行敏感性分析。利用Romax软件,采用遗传算法对齿轮进行齿廓最优修形、鼓形最优修形及拓扑最优修形,并将修形变动量叠加到最优修形上;然后,考虑中心距安装误差,分别对小齿轮进行了承载传动误差幅值、接触应力最大值分析;最后,进行了修形参数的变动对传动误差和接触应力的敏感性分析。结果表明,承载传动误差幅值对齿廓修形参数敏感,而对鼓形修形参数不敏感;齿廓最优修形后,承载传动误差对中心距安装误差不敏感,而鼓形修形反之;承载传动误差幅值对拓扑修形参数的敏感性介于齿廓、鼓形修形之间,当齿廓修形量远大于鼓形修形量时,承载传动误差幅值对中心距安装误差不敏感。
565 kW全液压推土机液压行驶驱动系统参数计算
为确定大功率全液压推土机液压行驶驱动系统中重要的液压元件-液压泵和液压马达的类型,针对某565 kW全液压推土机,进行其液压行驶驱动系统的参数计算。提出一种单边回路具有双泵双马达的液压行驶驱动系统结构,并根据其动力传递路线建立系统原理图;基于565 kW全液压推土机的原始设计参数,采用阻力计算法,由牵引平衡求出切线牵引力,进而确定马达的输出扭矩和排量;选取HMV-02系列排量为280 mL/r的液压马达和HPV-02系列排量为165 mL/r的液压泵,作为该565 kW全液压推土机的液压元件。经验证,选取的液压元件可以满足全液压推土机设计要求的有效牵引力;为其他大功率工程机械液压行驶驱动系统的研究提供了参考。
565 kW全液压推土机行驶驱动系统动态响应分析
液压行驶驱动系统是565 kW全液压推土机的核心,其性能的好坏影响着推土机的整机性能和工作效率。首先提出了四泵四马达液压行驶驱动系统的动力传递路线,确定了液压行驶驱动系统单边回路图;利用AMESim软件建立了液压行驶驱动系统单边回路的仿真模型;最后模拟推土机在铲掘过程中遇到的特殊工况和行驶工况,对系统流量、压力和车速进行了动态响应仿真分析。仿真结果表明:当加载100,250 kN的阶跃载荷时,系统压力分别稳定在21.44,45 MPa,负载越大,系统压力越高,但不会超过系统设定的最高匹配压力45 MPa;在推土机起步过程中,车速在2 s内稳定在2.6 km/h,起步平稳,制动过程与起步相反。因此,565 kW全液压推土机液压行驶驱动系统的设计方案在理论上是可行的。
-
共1页/3条





