浆料直写陶瓷3D打印挤出环节的流动分析研究
利用浆料直写技术可实现陶瓷3D打印的无模常温成型,基于螺杆挤出机在食品加工等领域的广泛应用,提出一种螺杆挤出结构代替原有的针筒式挤出结构,为了理解陶瓷浆体在螺杆螺道内的流动情况,首先通过流变仪测定了浆体的流变特征并采用MATLAB拟合了浆体的本构方程,最后利用格子Boltzmann方法(LBM)对流动过程进行了分析,获得了流线图及速度场分布情况,由数值模拟的结果可以发现,浆体的流动主要集中在螺道的中部,而在靠近壁面的部分速度较小。
基于CFD的淹没磨料射流的数值模拟与流动特性研究
针对淹没磨料射流的切割模拟实验,在分析其物理模型的基础上,建立了二维平面轴对称数学模型,利用商用软件PHOENICS,选用双流体模型和k-ε湍流模型,在无法直接测量流场参数的情况下,计算了实验室条件下模拟大水深水域环境淹没磨料射流的淹没流场,得到了淹没条件下液固两相射流流体的速度与压力分布规律,并与实验结果相比较,从理论上探寻了淹没磨料射流冲蚀效果与上述参数之间的关系及影响磨料射流在水下最佳冲蚀效果的因素,为进一步的实验提供理论依据和实际的预报作用.
混合式油气混输泵内部流动分析
为分析混合式油气混输泵内部流动情况、探索混合式叶轮结构对混输泵性能的影响,该文基于Pro/E及Fluent等软件,对混合式油气混输泵建立全三维流场。并采用Mixture多相流模型、Standard k-epsilon湍流模型以及基于Pressure-Velocity耦合计算的Simple C算法。以理想状态的水和空气作为多相介质,通过改变含气率(GVF)等工况,分析了混合式油气混输泵的内部流动情况,以及不同外径的混流式叶轮对油气混输泵外特性的影响。结果表明:混合式油气混输泵相较于原型泵的扬程和效率得到提高,混流式叶轮内的气液分布较为均匀,随着混流式叶轮外径的增大,扬程提高越明显;在相同混流式叶轮外径下,随含气率提高,扬程逐渐下降,叶轮出口边出现气液分离,但流道内湍动能基本不发生变化。
涡旋液压泵内部流动与压力脉动的数值模拟
采用CFD技术对涡旋泵内部流场进行三维非定常模拟,得到了不同转角下工作腔内压力、速度、气相体积分数以及进出口流量等参数,并进一步分析了泵内的压力脉动。研究结果表明:由于泵进口位置的不对称以及高速旋转下动盘对油的扰动作用,导致2个工作腔内流动的不对称;在高压差的作用下,动静盘啮合间隙处存在高速射流现象,并在间隙下游产生大面积的空化;在吸液末期和排液初期工作腔内会产生较高的压力脉动,严重影响泵的稳定性;通过降低转速、增大轴向间隙、缩短型线长度等方法可有效改善压力脉动现象。
调节阀流场的二维非定常数值模拟研究
对超临界600MW汽轮机调节阀进行二维非定常数值模拟计算,分析了调节阀由30%开度至100%开度的开启过程中的流动特性。给出了调节阀开启过程中阀门流场的变化情况,为阀门的设计提供了理论依据。
CAE技术在模具制造中的应用研究
为了预测塑料产品在生产中可能出现的问题,通过使用Moldflow模拟软件来评估、优化产品设计和制造参数。结果表明通过塑料流动分析、冷却分析和翘曲分析,可以及时发现成型中出现的问题,最大限度地消除产品生产过程中可能出现的不足,可以取代传统的反复试模、修模等过程,从而降低制造成本,缩短开发周期。
离心压缩机回流器内部流动分析
通过回流器内部流动的理论分析和对不同型式回流器的实验测试,着重研究了回流器内部流动特征,回流叶片型式对回流器性能及压缩机级特性的影响规律。应用了流线曲率法计算子午面流动,快速近似法计算叶片表面速度分布;用积分法计算二元可压缩紊流边界层。试验中分别对不同叶型叶片的回流器进行了静吹风和中间级性能试验,从理论和实践相结合的角度论证了最小扩压度叶型回流器的优越性。
不同叶高直板扩压器对压缩机级性能的影响
利用计算流体动力学方法,对3种不同叶高的直板型叶片扩压器下离心压缩机级的三维粘性湍流流场进行了数值模拟计算;对压缩机级的多变内效率和总压比性能曲线进行了比较。通过对气流流动参数在不同叶高扩压器内的分布规律的分析,给出了扩压器叶片高度对气流的影响特点,为流体机械部件的优化提供了数值依据。
等环量流型高比转速混流泵内部流场数值模拟
为揭示高比转速混流泵的内部流动规律,应用商用软件F luent对其进行数值模拟。模拟中以雷诺平均N-S方程为流动控制方程,采用标准k-ε二方程模型作为修正方程,对于压力和速度耦合关系采用SIMPLE算法处理。分析了等环量流型高比转速混流泵内部的静压分布和速度分布,得出结论为:叶片进口距离轮缘较近处存在明显的负压区,叶轮与导叶体之间存在明显的动静干扰,叶轮进口处存在轻微的流动冲击,但是并没有影响流体的整体流动。通过分析,揭示了高比转速混流泵内部流动规律,为其性能改进提供了依据。
梯度辟水涂层表面上的流动分析
基于对荷叶表面辟水性能的仿生,首次提出了表面张力梯度的新型表面设计,并分析了液滴在这种梯度表面上的运动过程,得到了液滴运动速度与位移随时间的变化规律.研究结果表明:在表面张力各向同性表面的流动速度为零,而液滴在梯度表面上的运动速度在0.2 s的时间内就可达到20 m/s以上,液滴的运动特性与在各向同性表面显著不同;通过涂层材料设计可获得表面张力梯度涂层,这种涂层在防雨衣、鱼雷与汽车挡风玻璃等产品中有重要应用价值.











