射流管式与喷嘴挡板式电液伺服阀之比较
射流管式与喷嘴挡板式电液伺服阀是目前世界上运用最普遍的典型两级流量控制伺服阀。该文对两种阀的结构、工作原理及特点分别作了比较与介绍并着重分析了射流管式伺服阀在可靠性及工作性能方面的优势。
基于Fluent的液压滑阀阀芯卡紧力研究
通过仿真分析,研究液压滑阀阀芯在不开均压槽、开3条矩形槽、开5条矩形槽、开5条三角形槽4种情况下,阀芯歪斜时阀芯卡紧力的变化。由仿真结果可知:阀芯歪斜时,在阀芯上开均压槽可以有效减小卡紧力,开的均压槽越多,卡紧力越小;开相同数量的矩形槽比三角槽的卡紧力大,但是更利于使阀芯趋于同心。
液压滑阀阀芯旋转现象的CFD解析
运用三次元流体分析技术对液压滑阀流场进行了数值解析。通过CFD数值解析所获得的压力和速度特性分析了造成滑阀旋转的主要原因,从而为滑阀结构的优化设计提供了依据。
带U形节流槽的滑阀稳态液动力研究
传统液动力理论计算公式难以准确预测带U形节流槽滑阀的稳态液动力,针对该问题以多路阀为测试对象,搭建高精度液动力测试平台,试验获得不同流动方向下的稳态液动力和阀口压力、流量特性,并用计算流体力学(CFD)对阀内流场进行了仿真.试验和仿真数据表明,带U形节流槽的滑阀的稳态液动力在单向流出流入和在双向进出油情况下均会出现负值,即使阀口趋于打开;三位六通阀双向进出油稳态液动力值与单向流出流入稳态液动力耦合值基本一致;仿真所得稳态液动力值和压差值与试验值吻合良好.
关于滑阀与锥阀中稳态液动力方向的比较分析
通过对滑阀与锥阀所受稳态液动力方向的分析,明确了稳态液动力对两种阀芯的作用并非通常认为的使阀口关闭的趋势;对于内流式锥阀与外流式锥阀和滑阀不同,其稳态液动力有使阀口开启的趋势。
高速绞车液压控制系统设计研究
设计一种高速绞车液压控制系统,并自主研发在该系统中起关键作用的大通径滑阀。介绍了该高速绞车液压控制系统的组成、工作原理及大通径滑阀的结构和特点。该高速绞车液压控制系统及大通径滑阀的研发经验对类似装备和元件的设计研究具有一定的借鉴作用。
基于FLUENT的特殊阀腔的纯水液压滑阀流道的建模与仿真
介绍一种纯水滑阀结构,并通过流体仿真软件fluent对纯水滑阀流道进行可视化分析,并得到阀腔流场数值仿真结果。根据仿真结果存在的问题提出了改进方案,通过对改进方案的仿真结果和未改进前仿真结果的对比,可以得出改进方案在减少液动力和有效减少汽蚀等性能优于前者。
具有形位误差的液压滑阀阀芯动态建模与仿真
制造和装配的误差使滑阀副不可避免的存在几何形状和同轴度误差,径向缝隙流动会对滑阀副换向过程中的力学特性产生影响。在分析径向缝隙流动及经过阀口的粘性流动的基础上,建立了阀芯换向过程的运动微分方程,得出了缝隙间的库埃特流动会使阀芯运动更平稳而泊肃叶流动对阀芯移动有正反两方面的影响。最后仿真分析并试验验证了偏心及缝隙越大阀芯运动越不平稳的结论。
液压滑阀内部温度特性的研究
在中、高压系统中,由于节流作用,油液流过滑阀的阀口时会发热使得油液温度升高,影响油液及系统的性能。针对油液流经节流口发热这一现象,进行了理论分析,并利用NHT(Numerical Heat Transfer,数值传热学)方法对滑阀内部的温度场和流场进行了三维数值模拟,对不同入口压力和阀口开度的滑阀温度场进行了解析。数值计算结果表明:油液流过节流口时温度升高主要源于黏性力做功导致的黏性耗散,且黏性耗散主要发生于阀口后方速度变化率非常大的涡旋区,并得出了工作压力和不同阀口开度对阀腔内温度场的影响,为滑阀设计提供了理论参考。
大通径滑阀缝隙流场分析及试验研究
阀芯卡紧是滑阀常见的故障,泄漏量过大也会对滑阀的工作性能产生影响.合理设计阀芯阀体的配合间隙,在阀芯上开设适当数量的均压槽,可以有效避免阀芯产生卡紧,同时获得较小的泄漏量.文章运用Fluent软件对60mm通径滑阀的缝隙流场进行仿真,结合试验研究,分析了均压槽对滑阀径向不平衡力和泄漏量的影响,评估了滑阀间隙密封结构,可为类似大通径滑阀的设计研发提供参考.











