碧波液压网 欢迎你,游客。 登录 注册

基于改进灰色神经网络的液压泵寿命预测

作者: 何庆飞 陈桂明 陈小虎 姚春江 来源:中国机械工程 日期: 2020-05-29 人气:224
基于改进灰色神经网络的液压泵寿命预测
改进了GM(1,1)模型,提高了其精度和适应范围;将改进的GM(1,1)模型与神经网络预测模型相结合来构建灰色神经网络组合预测模型;提出了基于支持向量机的液压泵寿命特征启发式搜索策略,以液压泵寿命特征参数特征集的交叉验证错误率为评价指标,从液压泵的特征参数(振动、压力、流量、温度、油液信息等)中选取寿命特征因子;运用小波阈值降噪法进行降噪处理,提取典型的小波包能量特征作为模型的输入。以齿轮泵为例,将改进的灰色神经网络预测模型与原始GM(1,1)模型和改进GM(1,1)模型比较可知,灰色神经网络预测模型预测精度最高,达到98.42%。

液压挖掘机臂杆结构疲劳寿命预测方法研究

作者: 童水光 王相兵 魏超 张帅 来源:中国机械工程 日期: 2020-05-21 人气:83
液压挖掘机臂杆结构疲劳寿命预测方法研究
液压挖掘机臂杆结构承受复杂的冲击载荷,其疲劳寿命存在许多不确定性因素。首先采用Miner准则,依据实验载荷谱和有限元方法对液压挖掘机工作装置寿命进行了预测。其次研究了结构疲劳寿命变化过程和灰色理论预测模型内在规律的一致性,建立了液压挖掘机工作装置疲劳寿命的灰色预测GM模型,并分别运用GM模型的两种形式———GM(1,1)线性模型及GM(1,1)幂模型对液压挖掘机工作装置进行疲劳寿命预测。分析比较Miner准则、GM(1,1)线性模型及GM(1,1)幂模型三种预测方法。结果表明,三种预测方法结果基本一致,灰色系统模型同Miner准则模型相比误差明显减小且非线性幂模型具有更高的预测精度。基于灰色理论的GM(1,1)幂模型考虑了非线性因素,更适合于液压挖掘机工作装置结构疲劳寿命预测。
    共1页/2条