热网络法和有限元法保护轴承热分析研究
在磁悬浮轴承系统中,悬浮转子会因突然断电而失去磁场力支撑,从而跌落到位于两端的保护轴承上,导致保护轴承内圈瞬间产生大量的摩擦热,使得保护轴承系统温度升高,影响保护轴承转动性能以及磁悬浮轴承的可靠性。根据轴承内部受载,得出轴承发热量,研究了保护轴承零件之间的生热及热传递关系。根据工况设置相应的热边界条件,运用有限元方法与热网络方法,对保护轴承进行热力学分析,获得保护轴承温度场分布,并对结果进行对比分析。结果表明保护轴承的最高温度在背离开口的内圈端面处,外圈温度小于滚珠温度,滚珠温度小于内圈温度,内外圈温度分布不对称。
立式转子跌落在保护轴承上的碰撞特性
保护轴承用于支承主动磁悬浮轴承系统中高速跌落的悬浮转子,其抗冲击性能直接影响磁悬浮轴承系统的安全性和可靠性。为研究立式主动磁悬浮轴承系统中保护轴承的抗冲击性能,以满装混合陶瓷球轴承作保护轴承,对转子-保护轴承系统进行受力分析,建立转子-保护轴承的动力学模型。利用多体动力学软件对转子跌落到保护轴承过程中保护轴承所受的碰撞力进行仿真,分析转子偏心状态下,跌落转速和动平衡精度等级对碰撞力的影响。结果表明:随着跌落转速和动平衡精度等级的提高,保护轴承所受的轴向碰撞力保持不变,径向碰撞力随之增大。
自消除间隙机构中保护轴承配合过盈量分析
结合自消除间隙保护轴承机构中滚动轴承的运动特点,建立了磁悬浮轴承转子与滚动轴承过盈配合的静态和高速旋转时的动态力学模型,并详细分析了转子、滚动轴承内圈以及外圈各处的位移变形。针对两组不同游隙值的滚动轴承,计算了转子与滚动轴承内圈所需的装配过盈量与转速的关系,并对转子、滚动轴承内圈和外圈在静态和动态下的强度进行了校核。从滚动轴承内圈和转子配合过盈量的角度,给出了自消除间隙保护轴承系统中滚动轴承的选取准则。
高速悬浮转子跌落在保护轴承上的碰撞力研究
对高速转子跌落在保护轴承上的碰撞力进行了理论分析和试验研究。基于Hertz接触理论,建立了转子跌落在保护轴承上的非线性碰撞力模型,并提出了转子跌落在保护轴承上的碰撞力测量方案,设计了碰撞力测量装置;考虑到碰撞力测量装置的非线性影响,运用冲击力锤分别在不同大小的冲击力下对碰撞力测量装置进行了标定,由转子跌落后支撑环的振动加速度信号反推碰撞力。对不同初始转速下转子跌落在保护轴承上的碰撞力进行了试验研究,得到了转子跌落后支撑环的振动加速度信号和转子轴心轨迹;试验结果表明初始转速越高,转子跌落后保护轴承受到的振动冲击越大,越容易出现涡动现象,且转子跌落后0.1s内,保护轴承受到的冲击达到最大值;最后根据碰撞力的试验结果对碰撞力模型进行了评估,识别出了碰撞系统动力学模型中的等效质量me和等效刚度系数ke,...
基于GLCT的磁悬浮轴承跌落过程中反向涡动轴轨迹瞬时频率提取
为了正确提取磁悬浮轴承跌落过程中发生反向涡动时轴轨迹的时频特征,本文引入了广义线性调频小波变换(GLCT).为分析不同时频方法在信号时频特性分析的优缺点,分别采用了短时傅里叶变换、Wigner-Ville分布、GLCT和Hilbert transform对磁悬浮轴承跌落过程中反向涡动情况下轴系Y轴(竖直)方向上的位移信号进行了处理.结果显示,短时傅里叶变换因为分析窗不具备瞬时频率调频率的自适应性,时频聚焦性不理想,瞬时频率的计算精度易受其影响;Wigner-Ville分布中交叉项会混淆真实时频分布,也会带来计算误差;而Hilbert transform过分依赖信号光滑性,噪声影响较大;GLCT具备理想的时频聚焦性,易于获得正确的瞬时频率.这有利于后续重新悬浮控制程序的开展.
-
共1页/5条







