电液伺服系统一种动力学建模方法
电液伺服系统具有响应速度快、输出功率大、抗冲击性好等优点,广泛应用于飞行器结构强度试验中。然而,因特殊物理结构,电液伺服系统具有复杂的非线性、时变性和不确定性,这为其动力学建模和控制器设计带来了很大的挑战。本文通过分析系统各个部件的物理学特性和工作原理,分别建立了伺服阀流量方程、非对称液压缸流量方程和液压缸力平衡方程。经过一系列数学变化,将动力学方程进一步转化为系统状态空间方程,便于未来工作中对系统进行基于模型的控制器设计。最后,进行了系统仿真平台的搭建,并采用PID控制器进行跟踪控制仿真试验,验证了所提模型的有效性。
基于SIMULINK的阀控液压缸的仿真
以一阀控液压缸为例,用阀控液压缸的状态空间方程进行建模,进行SIMULINK仿真,并与传递函数建模法对比,分析说明了两种方法的优缺点。
一种用于双输入双输出液位控制系统的状态估计控制器的设计
设计一种用于双输入双输出液位控制系统的状态估计控制器。从双输入双输出液位控制系统的结构出发,研究其结构及工作原理。在考虑系统集中扰动的基础上,利用系统的已知增益时滞比求取系统的状态空间方程。采用线性扩张状态观测器,构造系统的估计方程,并通过期望信号与输出信号误差的比值,构建状态估计控制器。通过所设计的状态估计控制器,求取双输入双输出液位系统中两个通道的估计方程以及控制信号。利用干扰观测器方法与所提方法分别对恒定及变化期望液位曲线进行跟踪。结果表明:在跟踪恒定及变化液位曲线时,所提方法对双输入双输出液位系统的控制效果较好,能够控制系统液位快速按照期望液位变化,可实现对双输入双输出液位的准确控制。
基于SIMULINK的阀控液压缸的仿真
以一阀控液压缸为例,用阀控液压缸的状态空间方程进行建模,进行SIMULINK仿真,并与传递函数建模法对比,分析说明了两种方法的优缺点。
-
共1页/4条






