人工路标辅助的室内移动机器人SLAM
为了提高移动机器人在大规模室内场景中同时定位与建图(SLAM)的精度,利用人工路标和激光雷达传感器对移动机器人SLAM进行了研究。针对大规模室内环境下移动机器人里程计信息不可靠,且低成本雷达测距范围较小导致地图创建结果与真实环境尺度严重不符的问题,提出了利用简单人工路标辅助移动机器人定位并结合基于Rao-Blackwellized的粒子滤波算法进行室内走廊场景的移动机器人SLAM,保证移动机器人在长距离运行下的准确定位,最后通过实验验证了方法的可行性,实验结果与真实环境一致性较高,基于人工路标的移动机器人运动轨迹精度提高了6%左右。
基于HMM和优化的PF的数控转台精度衰退模型
针对数控转台精度衰退状态缺乏有效的评估方法的问题,提出一种数控转台重复定位精度衰退趋势预测模型,该模型结合了隐马尔科夫(Hidden Markov Model,HMM)算法和粒子滤波(Particle Filtering,PF)算法,其中粒子滤波算法使用粒子群算法(Particle Swarm Optimization,PSO)优化了初始参数。选择了从数控转台精度衰退加速寿命试验中获得的振动信号作为研究数据。通过聚合经验模态与主成分分析(EEMD-PCA)算法对原始信号降噪,并提取含有故障特征的信号进行信号重构;使用统计特征量作为观察值训练获得HMM模型,对数控转台精度衰减做出早期诊断,并由此获得数控转台精度健康状态指标;使用粒子滤波算法建立数控转台精度衰退预测模型,并预测精度的剩余寿命。在以第50组数据为预测起始点时,预测的剩余寿命为21,实际测量的结果为17,相差4,比较接近。综合分析模型计算与试验测量...
-
共1页/2条




