碧波液压网 欢迎你,游客。 登录 注册

基于视觉技术和Mask R-CNN的法兰盘表面缺陷检测研究

作者: 赵祺 刘国宁 吕展博 张峰源 来源:机床与液压 日期: 2025-03-06 人气:178
基于视觉技术和Mask R-CNN的法兰盘表面缺陷检测研究
在法兰表面缺陷检测任务中,为了对缺陷进行精准定位和分类,根据缺陷位置和类别综合判定法兰是否符合特定标准的质量要求,结合缺陷特征和相应标准,提出一种基于视觉技术和Mask R-CNN的法兰表面缺陷检测与评估方法。依据法兰的适用原则和缺陷判定标准对法兰表面进行区域划分。通过搭建图像采集平台,采集图像并对其进行预处理操作后添加至网络训练集中。采用Mask R-CNN作为缺陷检测网络的基本框架,结合法兰表面缺陷特点改进Mask R-CNN骨干网络和颈部网络,并对网络性能进行验证。最后,根据检测标准,使用边缘检测算法对模型检测结果进行复检。结果表明改进后的方法能够实现精确的定位并进行质量评估,满足法兰表面缺陷检测的要求。

改进Mask RCNN的焊缝缺陷检测

作者: 杨彬 亚森江木沙 安波 来源:机械设计与制造 日期: 2025-01-21 人气:70
改进Mask RCNN的焊缝缺陷检测
焊接缺陷检测是焊接行业的一项重要工作,利用X射线焊缝缺陷图像进行缺陷检测是焊接无损检测的重要手段。为实现对缺陷的自动识别和定位,结合缺陷的具体特征提出了一种改进的Mask RCNN实例分割网络实现对图像进行缺陷检测和分割。该方法在原有网络的基础上通过采用变形卷积更好地提取不规则形状缺陷特征信息,引入空洞卷积加强高层特征的感受野,在局部图像中融合全局图像信息使局部图像获取上下文信息,利用迁移学习和数据增强降低对训练数据的需求,提升检测和分割精度。最终,通过对焊缝X射线数据集上进行实验,验证改进的Mask RCNN模型与原始Mask RCNN模型以及Faster RCNN模型等模型进行客观比较,并对实验结果进行可行性分析,提出的模型表现出更精确的检测精度和更好的性能。实验结果表明改进的Mask RCNN模型可以更好的适用于焊缝缺陷检测中。...

视觉引导下机器人拆垛场景识别定位抓取方法

作者: 朱新龙 崔国华 陈赛旋 杨琳 来源:机床与液压 日期: 2021-07-22 人气:201
视觉引导下机器人拆垛场景识别定位抓取方法
针对2D图像识别缺乏3D姿态信息,而传统的3D视觉需要处理大量点云,运算时间较长等问题,提出一种基于改进Mask R-CNN与局部点云迭代优化相结合的机器人拆垛、分拣及码垛策略。对Mask R-CNN网络进行改进,在其ROIAlign结构之后加入空间变换网络模块,提升识别准确率;利用改进的Mask R-CNN网络对目标进行实例分割,结合场景点云分割得到物体感兴趣区(ROI)场景局部点云;采用加入K维树邻域搜索的迭代最近点算法将物体ROI场景局部点云与模板点云进行配准,最终得到位姿估计的结果。UR5协作机器人根据此结果解决拆垛、分拣及码垛问题,实验结果表明:利用改进的Mask R-CNN网络提升了目标识别的准确率,使用ROI局部点云法减少了场景点云与模板点云配准的迭代次数,提高了工业机器人的拆垛、分拣及码垛效率。
    共1页/3条