碧波液压网 欢迎你,游客。 登录 注册

改进T分布随机近邻嵌入改进聚类的机械故障分类方法

作者: 朱曦海伦 易灿灿 来源:机械设计与制造 日期: 2025-01-23 人气:122
改进T分布随机近邻嵌入改进聚类的机械故障分类方法
轴承、齿轮等零部件作为机械设备的关键组成部分,它们的运行状态直接影响着整个系统的安全。为此,提出了T分布随机近邻嵌入改进的机械故障诊断方法。该方法将机械故障信号历史监测信号作为原始特征库,采用t-SNE降维算法提取机械故障信号的主特征矩阵,基于改进的聚类算法搜寻每一采样时刻的聚类中心,分别计算在各个采样时刻的偏心距离,得到归一化的累积偏心距离矩阵,从而实现故障的准确预测。结果表明,所提出的方法能够准确地分类不同机械故障模式,有助于保障设备健康平稳运行。

基于DMD和t-SNE的液压泵故障诊断

作者: 金林彩 叶杰凯 张珍 汤小明 邵锡余 庹帅 来源:机床与液压 日期: 2021-08-06 人气:184
基于DMD和t-SNE的液压泵故障诊断
液压泵长期处于高压、高速的运行工况下,泵体零部件极易发生故障。实际工况下测量的振动信号往往包含着许多无关信号成分如噪声,导致传统方法难以实现故障类型的准确识别。提出一种基于动模式分解(DMD)和t分布随机近邻嵌入(t-SNE)聚类的液压泵故障模式识别方法。在泵体布置传感器进行监测获得振动信号,首先利用DMD进行分解获得表征信号本质特征的模式分量,再利用t-SNE进行降维聚类,实现不同故障类型的准确识别。通过数值仿真和试验台故障数据分析,验证了提出方法的可行性及有效性。
    共1页/2条